【题目】设函数.
(Ⅰ)若,求在区间[-1,2]上的取值范围;
(Ⅱ)若对任意, 恒成立,记,求的最大值.
【答案】( Ⅰ) ;(Ⅱ) a-b的最大值是e.
【解析】试题分析:
(Ⅰ)题意就是要求函数在区间上的最大值和最小值,为此求出导函数,求出的解,确定函数在上的单调性,求出极值和区间端点处的函数值,比较可得最大值和最小值,即值域;(Ⅱ)由,即恒成立,可知,而,易知,即,而时,对两个参数分离一个出来,即,这样,下面我们只要求的最大值,同样利用导数可得,同样由导数知识求得函数的最大值即为最大值.
试题解析:
(Ⅰ)当时,,
,
的根是,且
当时,,当时,,
所以在(0,2)上单调递增,在(-1,0)上单调递减.
所以,,
所以在区间[-1,2]上的取值范围是.
(Ⅱ)恒成立,即恒成立,易知,
若,则,即,
若,由恒成立,即恒成立,
即恒成立,
令,则,当时,,
当时,,当时,,所以
在上单调递减,在上单调递增.
所以,
从而,,令,
因为,,
所以,是的极大值,
所以,故的最大值是.
科目:高中数学 来源: 题型:
【题目】已知△OAB的顶点坐标为O(0,0),A(2,9),B(6,﹣3),点P的横坐标为14,且 ,点Q是边AB上一点,且 .
(1)求实数λ的值与点P的坐标;
(2)求点Q的坐标;
(3)若R为线段OQ上的一个动点,试求 的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示, 是某海湾旅游区的一角,其中,为了营造更加优美的旅游环境,旅游区管委会决定在直线海岸和上分别修建观光长廊和AC,其中是宽长廊,造价是元/米, 是窄长廊,造价是元/米,两段长廊的总造价为120万元,同时在线段上靠近点的三等分点处建一个观光平台,并建水上直线通道(平台大小忽略不计),水上通道的造价是元/米.
(1) 若规划在三角形区域内开发水上游乐项目,要求的面积最大,那么和的长度分别为多少米?
(2) 在(1)的条件下,建直线通道还需要多少钱?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sinx+sin(x+ ),x∈R.
(1)求f(x)的最小正周期;
(2)求f(x)的最大值和最小值;
(3)若f(α)= ,求sin 2α的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知: 、 、 是同一平面内的三个向量,其中 =(1,2)
(1)若| |=2 ,且 ∥ ,求 的坐标;
(2)若| |= ,且 +2 与2 ﹣ 垂直,求v与 的夹角θ.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,曲线在点处的切线与直线垂直(其中为自然对数的底数).
(I)求的解析式及单调递减区间;
(II)是否存在常数,使得对于定义域内的任意恒成立?若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在四棱柱中,底面,底面为菱形,为与交点,已知,.
(I)求证:平面.
(II)在线段上是否存在一点,使得平面,如果存在,求的值,如果不存在,请说明理由.
(III)设点在内(含边界),且,求所有满足条件的点构成的图形,并求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知关于x的方程2x2﹣( +1)x+m=0的两根为sinθ和cosθ,θ∈(0,π).求:
(1)m的值;
(2)+ 的值;
(3)方程的两根及此时θ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆: 的离心率为, 为椭圆的右焦点, , .
(Ⅰ)求椭圆的方程;
(Ⅱ)设为原点, 为椭圆上一点, 的中点为,直线与直线交于点,过且平行于的直线与直线交于点.求证: .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com