20£®ÏÂÃæ¸ø³öµÄËĸöÃüÌâÖУº
¢ÙÒÔÅ×ÎïÏßy2=4xµÄ½¹µãΪԲÐÄ£¬ÇÒ¹ý×ø±êÔ­µãµÄÔ²µÄ·½³ÌΪ£¨x-1£©2+y2=1£»
¢Úµã£¨1£¬2£©¹ØÓÚÖ±ÏßL£ºX-Y+2=0¶Ô³ÆµÄµãµÄ×ø±êΪ£¨0£¬3£©£®
¢ÛÃüÌâ¡°?x¡ÊR£¬Ê¹µÃx2+3x+4=0¡±µÄ·ñ¶¨ÊÇ¡°?x¡ÊR£¬¶¼ÓÐx2+3x+4¡Ù0¡±£»
¢ÜÃüÌ⣺¹ýµã£¨0£¬1£©×÷Ö±Ïߣ¬Ê¹ËüÓëÅ×ÎïÏßy2=4x½öÓÐÒ»¸ö¹«¹²µã£¬ÕâÑùµÄÖ±ÏßÓÐ2Ìõ£®
ÆäÖÐÊÇÕæÃüÌâµÄÓТ٢ڢۣ¨½«ÄãÈÏΪÕýÈ·µÄÐòºÅ¶¼ÌîÉÏ£©£®

·ÖÎö ¢ÙÒÔÅ×ÎïÏßy2=4xµÄ½¹µã£¨1£¬0£©ÎªÔ²ÐÄ£¬ÇÒ¹ý×ø±êÔ­µãµÄÔ²µÄ°ë¾¶Îª1£¬¿ÉµÃÔ­µã·½³Ì£¬¼´¿ÉÅжϳöÕýÎó£»
¢ÚÉèµã£¨1£¬2£©¹ØÓÚÖ±ÏßL£ºX-Y+2=0¶Ô³ÆµÄµãµÄ×ø±êΪ£¨x£¬y£©£¬Ôò$\left\{\begin{array}{l}{\frac{x+1}{2}-\frac{y+2}{2}+2=0}\\{\frac{y-2}{x-1}¡Á1=-1}\end{array}\right.$£¬½âµÃ¼´¿ÉÅжϳöÕýÎó£®
¢ÛÀûÓÃÃüÌâµÄ·ñ¶¨¶¨Òå¼´¿ÉÅжϳöÕýÎó£»
¢ÜÕâÑùµÄÖ±ÏßÓÐ3Ìõ£¬·Ö±ðΪx=0£¬y=1£¬y=x+1£¬¼´¿ÉÅжϳöÕýÎó£®

½â´ð ½â£º¢ÙÒÔÅ×ÎïÏßy2=4xµÄ½¹µã£¨1£¬0£©ÎªÔ²ÐÄ£¬ÇÒ¹ý×ø±êÔ­µãµÄÔ²µÄ·½³ÌΪ£¨x-1£©2+y2=1£¬ÕýÈ·£»
¢ÚÉèµã£¨1£¬2£©¹ØÓÚÖ±ÏßL£ºX-Y+2=0¶Ô³ÆµÄµãµÄ×ø±êΪ£¨x£¬y£©£¬Ôò$\left\{\begin{array}{l}{\frac{x+1}{2}-\frac{y+2}{2}+2=0}\\{\frac{y-2}{x-1}¡Á1=-1}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{x=0}\\{y=3}\end{array}\right.$£¬Òò´ËËùÇó¶Ô³ÆµãΪ£¨0£¬3£©£¬ÕýÈ·£®
¢ÛÃüÌâ¡°?x¡ÊR£¬Ê¹µÃx2+3x+4=0¡±µÄ·ñ¶¨ÊÇ¡°?x¡ÊR£¬¶¼ÓÐx2+3x+4¡Ù0¡±£¬ÕýÈ·£»
¢ÜÃüÌ⣺¹ýµã£¨0£¬1£©×÷Ö±Ïߣ¬Ê¹ËüÓëÅ×ÎïÏßy2=4x½öÓÐÒ»¸ö¹«¹²µã£¬ÕâÑùµÄÖ±ÏßÓÐ3Ìõ£¬·Ö±ðΪx=0£¬y=1£¬y=x+1£¬Òò´Ë²»ÕýÈ·£®
ÆäÖÐÊÇÕæÃüÌâµÄÓТ٢ڢۣ®
¹Ê´ð°¸Îª£º¢Ù¢Ú¢Û£®

µãÆÀ ±¾Ì⿼²éÁËԲ׶ÇúÏßµÄÅж¨·½·¨¡¢ÃüÌâÕæ¼ÙµÄÅж¨·½·¨£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÉèÊýÁÐ{an}Âú×㣺an¡Ù0£¬a1=1£¬a2=2£¬an-1£¨an+1-an£©=a2n£¬n¡Ý2£®
£¨1£©Éèbn=$\frac{{a}_{n+1}}{{a}_{n}}$£¬ÇóÖ¤£º{bn}ΪµÈ²îÊýÁУ»
£¨2£©Éècn=$\frac{n}{{a}_{n+1}}$£¬ÇÒ{cn}µÄÇ°nÏîºÍΪSn£¬Ö¤Ã÷£ºSn£¼1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑ֪˫ÇúÏß$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1µÄÀëÐÄÂÊe=3£¬Ö±Ïßy=x+2ÓëË«ÇúÏß½»ÓÚA£¬BÁ½µã£¬ÈôOA¡ÍOB£¬ÇóË«ÇúÏߵķ½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÔÚ¡÷ABCÖУ¬½ÇA¡¢B¡¢C¶Ô±ß·Ö±ðΪa¡¢b¡¢c£¬ÇÒ2asinA=£¨2b+c£©sinB+£¨2c+b£©sinC£®
£¨¢ñ£©Çó½ÇA£»
£¨¢ò£©Èôa=2£¬Çó¡÷ABCÖܳ¤µÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®Õý·½ÌåABCD-A1B1C1D1ÖУ¬B1DÓëBC1¼Ð½ÇµÄ´óСÊÇ90¡ã£»ÈôE¡¢F·Ö±ðΪAB¡¢CC1µÄÖе㣬ÔòÒìÃæÖ±ÏßEFÓëA1C1¼Ð½ÇµÄ´óСÊÇ30¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Ö±Ïßy=k£¨x+1£©+3ÓëÒÔµãA£¨2£¬-5£©£¬B£¨4£¬-2£©Îª¶ËµãµÄÏ߶ÎABÓй«¹²µã£¬ÔòkµÄÈ¡Öµ·¶Î§ÊÇ[-$\frac{8}{3}$£¬-1]_

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®É躯Êýf£¨x£©=$\left\{\begin{array}{l}{{x}^{2}+2x+2£¬}&{x¡Ü0}\\{-{x}^{2}£¬}&{x£¾0}\end{array}\right.$£¬Èôf£¨f£¨a£©£©=2£¬Ôòa=£¨¡¡¡¡£©
A£®-$\sqrt{2}$B£®$\sqrt{2}$C£®1D£®-1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªº¯Êýf£¨x£©=3x2-x-1£¬x¡Ê[-1£¬2]£¬ÔÚ[-1£¬2]ÉÏÈÎÈ¡Ò»¸öÊýx0£¬f£¨x0£©¡Ý1µÄ¸ÅÂÊÊÇ£¨¡¡¡¡£©
A£®$\frac{2}{3}$B£®$\frac{4}{9}$C£®$\frac{1}{4}$D£®$\frac{5}{9}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Èý¸öÊýa=0.292£¬b=log20.29£¬c=20.29Ö®¼äµÄ´óС¹ØϵΪ£¨¡¡¡¡£©
A£®a£¼c£¼bB£®a£¼b£¼cC£®b£¼a£¼cD£®b£¼c£¼a

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸