精英家教网 > 高中数学 > 题目详情
设数列{an}的前n项和为Sn,已知a1=1,Sn=nan-n(n-1)(n∈N+
(1)求an的表达式;
(2)若数列{
1
anan+1
}
的前n项和为Tn,问:满足Tn
100
209
的最小正整数n是多少?
分析:(1)当n≥2时,由an=Sn-Sn-1=nan-(n-1)an-1-2(n-1),知an-an-1=2(n≥2),由此能求出an
(2)数列{
1
anan+1
}
的前n项和为Tn,由题设推出Tn=
n
2n+1
,故
n
2n+1
100
209
n>
100
9
,所以满足Tn
100
209
的最小正整数n是12.
解答:解:(1)当n≥2时,an=Sn-Sn-1=nan-(n-1)an-1-2(n-1)…(2分)
an-an-1=2(n≥2),
数列{an}是以a1=1为首项,以2为公差的等差数列
∴an=2n-1…(6分)
(2)数列{
1
anan+1
}
的前n项和为Tn,
Tn=
1
a1a2
+
1
a2a3
+…+
1
anan+1
=
1
1×3
+
1
3×5
+…+
1
(2n-1)×(2n+1)
=
1
2
[(
1
1
-
1
3
)+(
1
3
-
1
5
)+(
1
5
-
1
7
)+…+(
1
2n-1
-
1
2n+1
)]
=
1
2
(1-
1
2n+1
)=
n
2n+1
…(10分)
n
2n+1
100
209
,即n>
100
9

∴满足Tn
100
209
的最小正整数n是12…(12分)
点评:本题考查数列通项公式的求法,求数列前n项和的应用,综合性强,难度大,是高考的重点题型.解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的前n项的和为Sn,且Sn=3n+1.
(1)求数列{an}的通项公式;
(2)设bn=an(2n-1),求数列{bn}的前n项的和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列an的前n项的和为Sna1=
3
2
Sn=2an+1-3

(1)求a2,a3
(2)求数列an的通项公式;
(3)设bn=(2log
3
2
an+1)•an
,求数列bn的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的关系式;
(Ⅱ)求数列{an}的通项公式;
(Ⅲ)证明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式组
x≥0
y≥0
nx+y≤4n
所表示的平面区域为Dn,若Dn内的整点(整点即横坐标和纵坐标均为整数的点)个数为an(n∈N*
(1)写出an+1与an的关系(只需给出结果,不需要过程),
(2)求数列{an}的通项公式;
(3)设数列an的前n项和为SnTn=
Sn
5•2n
,若对一切的正整数n,总有Tn≤m成立,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•郑州一模)设数列{an}的前n项和Sn=2n-1,则
S4
a3
的值为(  )

查看答案和解析>>

同步练习册答案