精英家教网 > 高中数学 > 题目详情
一般来说,一个人脚掌越长,他的身高就越高,现对10名成年人的脚掌长与身高进行测量,得到数据(单位均为)如表,作出散点图后,发现散点在一条直线附近,经计算得到一些数据:;某刑侦人员在某案发现场发现一对裸脚印,量得每个脚印长为,则估计案发嫌疑人的身高为
    
脚长
20
21
22
23
24
25
26
27
28
29
身高
141
146
154
160
169
176
181
188
197
203
185.5

试题分析:回归方程的斜率,截距,即回归方程为,当
点评:回归直线方程过样本点中心,这条性质要牢固掌握,灵活应用.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本题12分)为了研究化肥对小麦产量的影响,某科学家将一片土地划分成200个的小块,并在100个小块上施用新化肥,留下100个条件大体相当的小块不施用新化肥.下表1和表2分别是施用新化肥和不施用新化肥的小麦产量频数分布表(小麦产量单位:kg)
表1:施用新化肥小麦产量频数分布表
小麦产量





频数
10
35
40
10
5
表2:不施用新化肥小麦产量频数分布表
小麦产量




频数
15
50
30
5
(10)     完成下面频率分布直方图;

(2)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计施用化肥和不施用化肥的一小块土地的小麦平均产量;
(3)完成下面2×2列联表,并回答能否有99.5%的把握认为“施用新化肥和不施用新化肥的小麦产量有差异”
表3:
 
小麦产量小于20kg
小麦产量不小于20kg
合计
施用新化肥


 
不施用新化肥


 
合计
 
 

 
附:

0.050
0.010
0.005
0.001

3.841
6.635
7.879
10.828
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

正定中学教学处采用系统抽样方法,从学校高三年级全体800名学生中抽50名学生做学习状况问卷调查。现将800名学生从1到800进行编号,在中随机抽取一个数,如果抽到的是7,则从中应取的数是         

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某校从参加某次知识竞赛的同学中,选取60名同学将其成绩(百分制,均为整数)分成6组后,得到部分频率分布直方图(如图),观察图中的信息,回答下列问题.

(Ⅰ)求分数在[70,80)内的频率,并补全这个频率分布直方图;
(Ⅱ)根据频率分布直方图,估计本次考试的平均分;
(Ⅲ)若从60名学生中随机抽取2人,抽到的学生成绩在[40,70)记0分,记[70,100]记1分,用X表示抽取结束后的总记分,求X的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在对某样本进行实验时,测得如下数据:则之间的回归直线方程为(  )

2
1
4
3

3
2
5
4
A、   B、   C、   D、

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

一组数据的极差是7,那么的值是           .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

随机抽取某中学甲、乙两面个班10名同学,测量他们的身高(单位:cm)后获得身高数据的茎叶图如图甲所示,在这20人中,记身高在内的人数依次为,图乙是统计样本中身高在一定范围内的人数的算法流程图,则下列说法正确的是(  )
 
A.由图甲可知甲、乙两班中身高的中位数较大的是甲班,图乙输出的S的值为18
B.由图甲可知甲、乙两班中身高的中位数较大的是乙班,图乙输出的S的值为18
C.由图甲可知甲、乙两班中身高的中位数较大的是乙班,图乙输出的S的值为16
D.由图甲可知甲、乙两班中身高的中位数较大的是甲班,图乙输出的S的值为16

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
某大学高等数学老师上学期分别采用了两种不同的教学方式对甲、乙两个大一新生班进行教改试验(两个班人数均为60人,入学数学平均分数和优秀率都相同;勤奋程度和自觉性都一样)。现随机抽取甲、乙两班各20名同学的上学期数学期末考试成绩,得到茎叶图如下:

(Ⅰ)依茎叶图判断哪个班的平均分高?
(Ⅱ)从乙班这20名同学中随机抽取两名高等数学成绩不得低于85分的同学,求成绩为90分的同学被抽中的概率;
(Ⅲ)学校规定:成绩不低于85分的为优秀,请填写下面的列联表,并判断“能否在犯错误的概率不超过0.025的前提下认为成绩优秀与教学方式有关?”
 
甲班
乙班
合计
优秀
 
 
 
不优秀
 
 
 
合计
 
 
 
下面临界值表仅供参考:

0.15
0.10
0.05
0.025
0.010
0.005
0.001

2.072
2.706
3.841
5.024
6.635
7.879
10.828
(参考公式:其中) 
(Ⅳ)从乙班高等数学成绩不低于85分的同学中抽取2人,成绩不低于90分的同学得奖金100元,否则得奖金50元,记为这2人所得的总奖金,求的分布列和数学期望。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)
甲、乙两台机床生产同一型号零件.记生产的零件的尺寸为(cm),相关行业质检部门规定:若,则该零件为优等品;若,则该零件为中等品;其余零件为次品.现分别从甲、乙机床生产的零件中各随机抽取50件,经质量检测得到下表数据:
尺寸






甲机床零件频数
2
3
20
20
4
1
乙机床零件频数
3
5
17
13
8
4
(Ⅰ)设生产每件产品的利润为:优等品3元,中等品1元,次品亏本1元. 若将频率视为概率,试根据样本估计总体的思想,估算甲机床生产一件零件的利润的数学期望;
(Ⅱ)对于这两台机床生产的零件,在排除其它因素影响的情况下,试根据样本估计总体的思想,估计约有多大的把握认为“零件优等与否和所用机床有关”,并说明理由.
参考公式:.
参考数据:

0.25
0.15
0.10
0.05
0.025
0.010

1.323
2.072
2.706
3.841
5.024
6.635
 

查看答案和解析>>

同步练习册答案