【题目】如图,在正三棱柱中底面边长、侧棱长都是4,别是的中点,则以下四个结论中正确的是( )
①与所成的角的余弦值为;②平行于平面;③三棱锥的体积为;④垂直于.
A.①②③B.②③④C.①③④D.①②④
科目:高中数学 来源: 题型:
【题目】疫情爆发以来,相关疫苗企业发挥专业优势与技术优势争分夺秒开展疫苗研发.为测试疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),选定2000个样本分成三组,测试结果如“下表:
组 | 组 | 组 | |
疫苗有效 | 673 | ||
疫苗无效 | 77 | 90 |
已知在全体样本中随机抽取1个,抽到组疫苗有效的概率是0.33.
(1)求,的值;
(2)现用分层抽样的方法在全体样本中抽取360个测试结果,求组应抽取多少个?
(3)已知,,求疫苗能通过测试的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》是我国古代内容极为丰富的数学名著,书中提到了一种名为“刍甍[chúméng]”的五面体(如图),四边形为矩形,棱.若此几何体中,,和都是边长为的等边三角形,则此几何体的体积为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分10分)[选修4-5:不等式选讲]
已知函数=|x-a|+(a≠0)
(1)若不等式-≤1恒成立,求实数m的最大值;
(2)当a<时,函数g(x)=+|2x-1|有零点,求实数a的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线与圆在第一象限交点为,曲线.
(1)若,求b;
(2)若,与x轴交点是,P是曲线上一点,且在第一象限,并满足,求∠;
(3)过点且斜率为的直线交曲线于M、N两点,用b的代数式表示,并求出的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线的参数方程为为参数,曲线上的点的极坐标分别为.
(1)过O作线段的垂线,垂足为H,求点H的轨迹的直角坐标方程;
(2)求两点间的距离的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出以下命题:
(1)已知回归直线方程为,样本点的中心为,则;
(2)已知,与的夹角为钝角,则是的充要条件;
(3)函数图象关于点对称且在上单调递增;
(4)命题“存在”的否定是“对于任意”;
(5)设函数,若函数恰有三个零点,则实数m的取值范围为.
其中不正确的命题序号为______________ .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,直线过原点且倾斜角为.以坐标原点为极点,轴正半轴为极轴建立坐标系,曲线的极坐标方程为.在平面直角坐标系中,曲线与曲线关于直线对称.
(Ⅰ)求曲线的极坐标方程;
(Ⅱ)若直线过原点且倾斜角为,设直线与曲线相交于,两点,直线与曲线相交于,两点,当变化时,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点到定点的距离比到定直线的距离小1.
(Ⅰ)求点的轨迹的方程;
(Ⅱ)过点任意作互相垂直的两条直线,分别交曲线于点和.设线段, 的中点分别为,求证:直线恒过一个定点;
(Ⅲ)在(Ⅱ)的条件下,求面积的最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com