精英家教网 > 高中数学 > 题目详情
已知椭圆
(1)若椭圆的长轴长为4,离心率为,求椭圆的标准方程;
(2)在(1)的条件下,设过定点的直线与椭圆交于不同的两点,且为锐角(为坐标原点),求直线的斜率的取值范围;
(3)过原点任意作两条互相垂直的直线与椭圆相交于四点,设原点到四边形的一边距离为,试求满足的条件.
(1);(2);(3).

试题分析:(1)利用已知条件找出解出即得;(2)设直线方程,联立方程组消去得到关于的方程,由求出的范围;(3)设直线的方程为联立方程组消去到关于的方程,利用、韦达定理、点到直线的距离公式求解.
试题解析:(1)依题意,,解得,故椭圆的方程为.
(2)如图,依题意,直线的斜率必存在,

设直线的方程为
联立方程组,消去整理得
由韦达定理,
,
因为直线与椭圆相交,则
,解得
为锐角时,向量,则
,解得
故当为锐角时,.
如图,

依题意,直线的斜率存在,设其方程为,由于
,即,又
          ①
联立方程组,消去
由韦达定理得,代入①得

令点到直线的距离为1,则,即

整理得.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的中心在坐标原点,焦点在x轴上,左、右焦眯分别为F1,F2,且|F1F2|=2,点P(1,)在椭圆C上.
(I)求椭圆C的方程;
(II)过F1的直线l与椭圆C相交于A,B两点,且的面积为,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆长轴的左右端点分别为A,B,短轴的上端点为M,O为椭圆的中心,F为椭圆的右焦点,且·=1,||=1.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)若直线l交椭圆于P,Q两点,问:是否存在直线l,使得点F恰为△PQM的垂心?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在直角坐标系中,点到两点的距离之和等于4,设点的轨迹为,直线交于两点.
(1)写出的方程;
(2)若点在第一象限,证明当时,恒有.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:=1(a>b>0)的焦距为4,且与椭圆x2=1有相同的离心率,斜率为k的直线l经过点M(0,1),与椭圆C交于不同的两点A、B.
(1)求椭圆C的标准方程;
(2)当椭圆C的右焦点F在以AB为直径的圆内时,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的右焦点为 为椭圆的上顶点,为坐标原点,且两焦点和短轴的两端构成边长为的正方形.
(1)求椭圆的标准方程;
(2)是否存在直线交与椭圆于,且使,使得的垂心,若存在,求出点的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线与椭圆共顶点,且焦距是6,此双曲线的渐近线是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆的左焦点作互相垂直的两条直线,分别交椭圆于四点,则四边形面积的最小值为(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆的离心率为,则k的值为(    )
A.-21B.21C.或21D.或21

查看答案和解析>>

同步练习册答案