精英家教网 > 高中数学 > 题目详情

【题目】某班有两个课外活动小组,其中第一小组有足球票6张,排球票4张;第二个小组有

足球票4张,排球票6张.甲从第一小组的10张票中任抽1张,乙从第二小组的10

张票中任抽1张.

(1)两人都抽到足球票的概率是多少?

(2)两人中至少有一人抽到足球票的概率是多少?

【答案】() 两人都抽到足球票的概率是

()两人中至少有1人抽到足球票的概率是

【解析】记甲从第一小组的10张票中任抽1张,抽到足球票为事件A乙从第二小组的10张票中任抽1张,抽到足球票为事件B,则甲从第一小组的10张票中任抽1张,抽到排球票为事件乙从第二小组的10张票中任抽1张,抽到排球票为事件

2

于是

由于甲(或乙)是否抽到足球票,对乙(或甲)是否抽到足球票没有影响,因此AB是相互独立事件. 6

)甲、乙两人都抽到足球票就是事件A·B发生,根据相互独立事件的概率乘法公式,得到

PA·B)=PA·PB)=

答:两人都抽到足球票的概率是9

)甲、乙两人均未抽到足球票(事件·发生)的概率为:

P·)=P·P)=

两人中至少有1人抽到足球票的概率为:

P1P·)=111

答:两人中至少有1人抽到足球票的概率是12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若函数有极值,求实数的取值范围;

(Ⅱ)当有两个极值点(记为)时,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某居民小区要建造一座八边形的休闲小区,它的主体造型的平面图是由两个相同的矩形ABCD和EFGH构成的,是面积为200平方米的十字形地带.计划在正方MNPQ上建一座花坛,造价是每平方米4 200元,在四个相同的矩形(图中阴影部分)上铺上花岗岩地坪,造价是每平方米210元,再在四个空角上铺上草坪,造价是每平方米80元.

(1)设总造价是S元,AD长为x米,试建立S关于x的函数关系式;

(2)当x为何值时,S最小?并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地

区调查了500位老年人,结果如下:

需要

40

30

不需要

160

270

(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;

(2)能否在犯错误的概率不超过0.01的前提下认为该地区的老年人需要志愿者提供帮助与性别有

关?

附:

P(K2k)

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂在甲、乙两地的两个分厂各生产某种机器12台和6. 现销售给A10B8. 已知从甲地调运1台至A地、B地的运费分别为400元和800从乙地调运1台至A地、B地的费用分别为300元和500元.

(1)设从甲地调运x台至A求总费用y关于台数x的函数解析式;

(2)若总运费不超过9 000问共有几种调运方案;

(3)求出总运费最低的调运方案及最低的费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)是正比例函数函数g(x)是反比例函数f(1)=1,g(1)=2.

(1)求函数f(x)g(x);

(2)判断函数f(x)+g(x)的奇偶性

(3)求函数f(x)+g(x)(0,]上的最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为,对于任意的都有时, .

1)求

2)证明:对于任意的

3)当时,若不等式上恒定成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(1)讨论函数的极值;

(2)当时, ,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax2-2ax+2+b(a≠0)在区间[2,3]上有最大值5,最小值2.

(1)求a,b的值;

(2)若b<1,g(x)=f(x)-2mx在[2,4]上单调,求m的取值范围.

查看答案和解析>>

同步练习册答案