精英家教网 > 高中数学 > 题目详情
如图:已知△ABC为直角三角形,分别以直角边AC、BC为直径作半圆AmC和BnC,以AB为直径作半圆ACB,记两个月牙形阴影部分的面积之和为S1,△ABC的面积为S2,则S1与S2的大小关系为(  )
分析:根据题给图形可知:S1=
1
2
π(
1
2
AC)2+
1
2
π(
1
2
BC)2-
1
2
π(
1
2
AB)2+S△ABC,S2=S△ABC,在Rt△ABC中BC2+AC2=AB2,继而即可得出答案;
解答:解:在Rt△ABC中,有BC2+AC2=AB2
∴S1=
1
2
π(
1
2
AC)2+
1
2
π(
1
2
BC)2-
1
2
π(
1
2
AB)2+S△ABC=
1
8
π(BC2+AC2-AB2)+S△ABC=S△ABC
S2=S△ABC
所以S1=S2
故选C.
点评:本题考查勾股定理的知识,解题关键是找出各个图形之间的关系,即可求解,难度一般.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

10、如图,已知△ABC为直角三角形,其中∠ACB=90°,M为AB中点,PM垂直于△ABC所在平面,那么(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,已知△ABC为正三角形,EC⊥平面ABC,BD⊥平面ABC,且EC、BD在平面ABC的同侧,M为EA的中点,CE=CA=2BD,求证:
(1)DE=DA;
(2)平面BDM⊥平面ECA.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知△ABC为正三角形,EC⊥平面ABC,BD⊥平面ABC,且EC、BD在平面ABC的同侧,M为EA的中点,CE=CA=2BD,
求证:(1)DE=DA;
(2)平面BDM⊥平面ECA.

查看答案和解析>>

科目:高中数学 来源:2011年高考数学复习:7 立体几何 质量检测(1)(解析版) 题型:选择题

如图,已知△ABC为直角三角形,其中∠ACB=90°,M为AB中点,PM垂直于△ABC所在平面,那么( )

A.PA=PB>PC
B.PA=PB<PC
C.PA=PB=PC
D.PA≠PB≠PC

查看答案和解析>>

同步练习册答案