精英家教网 > 高中数学 > 题目详情
过点P(1,4)的直线l与两坐标轴正半轴相交,当直线l在两坐标轴上的截距之和最小时,直线l的方程是
2x+y-6=0
2x+y-6=0
分析:设直线方程的截距式:
x
a
+
y
b
=1
,由题意得
1
a
+
4
b
=1
,由此化简直线l在两坐标轴的截距之和得a+b=(a+b)(
1
a
+
4
b
)=5+
b
a
+
4a
b
,利用基本不等式求出当且仅当
b
a
=
4a
b
时截距之和最小,即可算出相应的直线l的方程.
解答:解:设直线l的方程为
x
a
+
y
b
=1
(a>0,b>0)
∵P(1,4)在直线l上
1
a
+
4
b
=1

可得在两坐标轴上的截距之和a+b=(a+b)(
1
a
+
4
b
)=5+
b
a
+
4a
b
≥5+2
b
a
4a
b
=9
当且仅当
b
a
=
4a
b
时,即b=2a=6时,等号成立
此时的直线方程为
x
3
+
y
6
=1
,化简得2x+y-6=0
故答案为:2x+y-6=0
点评:本题给经过定点的直线,求直线在轴上的截距之和最小时直线的方程.着重考查了直线的方程、直线的基本量和基本不等式求最值等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知动点P与直x=4的距离等于它到定点F(1,0)的距离的2倍,
(1)求动点P的轨迹C的方程;
(2)点M(1,1)在所求轨迹内,且过点M的直线与曲线C交于A、B,当M是线段AB中点时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淮南二模)已知椭圆C:
x2
a2
+
y2
b2
=1,(a>b>0)与双曲4x2-
4
3
y2=1有相同的焦点,且椭C的离心e=
1
2
,又A,B为椭圆的左右顶点,M为椭圆上任一点(异于A,B).
(1)求椭圆的方程;
(2)若直MA交直x=4于点P,过P作直线MB的垂线x轴于点Q,Q的坐标;
(3)求点P在直线MB上射R的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(本小题满分13分)

        已知椭圆C的中心在的点,焦点在x轴上,F1,F2分别是椭圆C的左、右焦点,M是椭圆短轴的一个端点,过F1的直线与椭圆交于A,B两点,的面积为4,的周长为

   (I)求椭圆C的方程;

   (II)设点Q的从标为(1,0),是否存在椭圆上的点P及以Q为圆心的一个圆,使得该圆与直

线PF1,PF2都相切,若存在,求出P点坐标及圆的方程;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:2008-2009学年福建省泉州市南安一中高二(上)年期末数学试卷(文科)(解析版) 题型:解答题

已知动点P与直x=4的距离等于它到定点F(1,0)的距离的2倍,
(1)求动点P的轨迹C的方程;
(2)点M(1,1)在所求轨迹内,且过点M的直线与曲线C交于A、B,当M是线段AB中点时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源:2012年安徽省淮南市高考数学二模试卷(理科)(解析版) 题型:解答题

已知椭圆C:+=1,(a>b>0)与双曲4x2-y2=1有相同的焦点,且椭C的离心e=,又A,B为椭圆的左右顶点,M为椭圆上任一点(异于A,B).
(1)求椭圆的方程;
(2)若直MA交直x=4于点P,过P作直线MB的垂线x轴于点Q,Q的坐标;
(3)求点P在直线MB上射R的轨迹方程.

查看答案和解析>>

同步练习册答案