精英家教网 > 高中数学 > 题目详情
16.sin660°的值是-$\frac{\sqrt{3}}{2}$.

分析 原式中的角度变形后,利用诱导公式及特殊角的三角函数值计算即可得到结果.

解答 解:sin660°=sin(720°-60°)=-sin60°=-$\frac{\sqrt{3}}{2}$.
故答案为:-$\frac{\sqrt{3}}{2}$.

点评 此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{\begin{array}{l}{2^x},x≤0\\{log_{\frac{1}{2}}}x,x>0\end{array}$,则f[f(-2)]=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知sin(π-θ)<0,cos(π+θ)>0,则θ为第几象限角(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f1(x),f2(x)分别是定义在R上的偶函数和奇函数,且满足f1(x)+f2(x)=x2-2+$\frac{1}{2}({e^x}-{e^{-x}})$.
(1)求函数f1(x)和f2(x)的解析式;
(2)已知函数g(x)=f1(x)+2(x+1)+alnx在区间(0,1]上单调递减,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知椭圆中心在原点,焦点在y轴上,长轴长为6,离心率为$\frac{2}{3}$.则椭圆方程(  )
A.$\frac{{x}^{2}}{5}$+$\frac{{y}^{2}}{9}$=1B.$\frac{{x}^{2}}{9}$$+\frac{{y}^{2}}{16}$=1C.$\frac{{x}^{2}}{16}$$+\frac{{y}^{2}}{16}$=1D.$\frac{{x}^{2}}{16}$$+\frac{{y}^{2}}{9}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数$y=sin(-3x+\frac{π}{4})$的最小正周期是(  )
A.$\frac{2π}{3}$B.$-\frac{2π}{3}$C.$\frac{π}{3}$D.$-\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.数列{an}满足:a1=2,an+1=a1+a2+…+an+6,(n∈N*).
(1)判断{an}是不是等比数列,并说明理由;
(2)令bn=log2 an,若x<$\frac{1}{{b}_{1}{b}_{2}}$+$\frac{1}{{b}_{2}{b}_{3}}$+…+$\frac{1}{{b}_{n}{b}_{n+1}}$<y对一切n∈N*成立,求x和y的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知曲线f(x)=ax3+b在x=1处的切线方程是y=3x-1.
(1)求y=f(x)的解析式;
(2)求曲线过点(-1,0)的切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下面给出了关于复数的四种类比推理:
①若a,b∈R,则a-b>0⇒a>b”类比推出“若a,b∈C,则a-b>0⇒a>b”;
②复数的加减法运算可以类比多项式的加减法运算法则
③由实数a绝对值的性质|a|2=a2类比得到复数z的性质|z|2=z2
④由向量加法的几何意义可以类比得到复数加法的几何意义.
其中类比得到的结论错误的是(  )
A.①③B.②④C.②③D.①④

查看答案和解析>>

同步练习册答案