精英家教网 > 高中数学 > 题目详情

如图,在正方体ABCD-A1B1C1D1中,
(1)求异面直线A1D与BC1所成的角;
(2)求证:平面ACC1A1⊥平面A1BD.

解:(1)将A1D平移到B1C,
则B1C与BC1所成的角即为异面直线A1D与BC1所成的角,
而B1C⊥BC1
∴异面直线A1D与BC1所成的角为90°;
(2)∵正方体中AA1⊥平面ABCD
∴BD⊥AC,BD⊥A1A,AC∩A1A=A
∴BD⊥平面ACC1A1
而BD?平面A1BD
∴平面ACC1A1⊥平面A1BD.
分析:(1)将A1D平移到B1C,根据异面直线所成角的定义可知B1C与BC1所成的角即为异面直线A1D与BC1所成的角,从而即可求出所求;
(2)欲证平面ACC1A1⊥平面A1BD,根据面面垂直的判定定理可知在平面A1BD内一直线与平面ACC1A1垂直,而根据线面垂直的判定定理可得BD⊥平面ACC1A1
点评:本小题主要考查空间中的线面关系,考查面面垂直的判定及异面直线所成的角的计算,考查识图能力和逻辑思维能力,考查转化思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网若Rt△ABC中两直角边为a、b,斜边c上的高为h,则
1
h2
=
1
a2
+
1
b2
,如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记M=
1
PO2
,N=
1
PA2
+
1
PB2
+
1
PC2
,那么M、N的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,记M=
1
PO2
N=
1
PA2
+
1
PB2
+
1
PC2
,那么M,N的大小关系是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网若Rt△ABC中两直角边为a、b,斜边c上的高为h,则
1
h2
=
1
a2
+
1
b2
,如图,在正方体的一角上截取三棱锥P-ABC,PO为棱锥的高,类比平面几何中的结论,得到此三棱锥中的一个正确结论为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,E为DD1的中点,
(1)求证:AC⊥平面D1DB;
(2)BD1∥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,点P是上底面A1B1C1D1内一动点,则三棱锥P-ABC的主视图与左视图的面积的比值为(  )

查看答案和解析>>

同步练习册答案