精英家教网 > 高中数学 > 题目详情
19.已知变量x,y满足$\left\{\begin{array}{l}{x-2y+4≥0}\\{x≤2}\\{x+y-2≥0}\end{array}\right.$,则$\frac{x+y+3}{x+2}$的取值范围是[$\frac{5}{4}$,$\frac{5}{2}$].

分析 作出可行域,变形目标函数可得$\frac{x+y+3}{x+2}$=1+$\frac{y+1}{x+2}$表示可行域内的点与A(-2,-1)连线的斜率与1的和,数形结合可得.

解答 解:作出$\left\{\begin{array}{l}{x-2y+4≥0}\\{x≤2}\\{x+y-2≥0}\end{array}\right.$所对应的区域(如图阴影),
变形目标函数可得$\frac{x+y+3}{x+2}$=$\frac{x+2+y+1}{x+2}$=1+$\frac{y+1}{x+2}$,
表示可行域内的点与A(-2,-1)连线的斜率与1的和,
由图象可知当直线经过点B(2,0)时,目标函数取最小值1+$\frac{0+1}{2+2}$=$\frac{5}{4}$;
当直线经过点C(0,2)时,目标函数取最大值1+$\frac{2+1}{0+2}$=$\frac{5}{2}$;
故答案为:[$\frac{5}{4}$,$\frac{5}{2}$]

点评 本题考查简单线性规划,涉及直线的斜率公式,准确作图是解决问题的关键,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E、F分别为侧棱BB1、CC1的中点,求四棱锥B-A1EFD1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知A(-2,1),B(3,2)两点分别在直线2x-ay+1=0的两侧,则实数a的取值范围为(-3,$\frac{7}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设U={1,2,3,4,5,6,7},A={1,4,5},B={3,5,7},求(∁UA)∩B,(∁UB)∪A,(∁UB)∩(∁UA),∁U(A∪B)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.比较大小:
sin1和sin1.5
cos1和cos1.5
tan3和tan2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求证:方程x3+3x-1=0在区间(0,1)上有实数解.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=$\frac{{x}^{2}-1}{x}$为奇函数,则f(2)+f(-2)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知f(x)=kx+b的图象过点(2,1),且b2-6b+9≤0
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)若a>0,解关于x的不等式x2-(a2+a+1)x+a3+3<f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求下列各式的值:
(1)1ne-2+1ogππ:
(2)log336-log34:
(3)1g5+1g20:
(4)1og78+1og7$\frac{1}{8}$:
(5)log6$\sqrt{216}$:
(6)log0.51-log0.54
(7)1og7$\root{3}{49}$+log${\;}_{\frac{1}{2}}$$\root{4}{16}$.

查看答案和解析>>

同步练习册答案