精英家教网 > 高中数学 > 题目详情
已知函数y=f(x+1)定义域是[-2,3],则y=f(2x-1)的定义域(  )
A、[0,
5
2
]
B、[-1,4]
C、[-5,5]
D、[-3,7]
考点:函数的定义域及其求法
专题:函数的性质及应用
分析:根据题目给出的函数y=f(x+1)定义域,求出函数y=f(x)的定义域,然后由2x-1在f(x)的定义域内求解x即可得到函数y=f(2x-1)定义域
解答: 解:解:∵函数y=f(x+1)定义域为[-2,3],
∴x∈[-2,3],则x+1∈[-1,4],
即函数f(x)的定义域为[-1,4],
再由-1≤2x-1≤4,得:0≤x≤
5
2

∴函数y=f(2x-1)的定义域为[0,
5
2
].
故选A.
点评:本题考查了函数的定义域及其求法,给出了函数y=f(x)的定义域为[a,b],求解y=f[g(x)]的定义域,只要让g(x)∈[a,b],求解x即可.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设△ABC的内角A、B、C所对的边分别为a、b、c,若a=2,A=2(B+C),则△ABC面积的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2x满足(  )
A、f(xy)=f(x)+f(y)
B、f(xy)=f(x)•f(y)
C、f(x+y)=f(x)+f(y)
D、f(x+y)=f(x)•f(y)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|y=lnx},集合B={x∈Z||x|≤2},则A∩B=(  )
A、(1,2)
B、{1,2}
C、(0,2)
D、{0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:

在四面体ABCD中,E为AD中点,△ABC与△BCD都是边长为4的正三角形.
(1)求证:AD⊥BC;
(2)若AD=6,求点C到平面BDE的距离;
(3)若点D到平面ABC的距离为3,求二面角A-BC-D的大小;
(4)设二面角A-BC-D的大小为θ,那么θ为何值时,四面体A-BCD的体积最大,最大为多少?此时AD的长是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

以下命题中真命题的个数为(  )
①p:?x∈R,x2+2x+2=0的否定;
②?x∈N,x3>x2
③若p:?x∈M,p(x),则¬p:?x∈M,¬p(x)
A、0B、1C、2D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=
1
2
(eλx+e-λx) (λ∈R),当参数λ的取值分别为λ1与λ2时,其在区间[0,+∞)上的图象分别为图中曲线C1与C2,则下列关系式正确的是(  )
A、λ1<λ2
B、λ1>λ2
C、|λ1|<|λ2|
D、|λ1|>|λ2|

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方体ABCD-A1B1C1D1中,P、Q分别为棱AA1和CC1的中点,问:∠D1PB1与∠BQD是否相等?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的定义域为D.若存在区间[m,n]⊆D,使函数f(x)在[m,n]上的值域为[km,kn](k>0),则称函数f(x)是k类函数.设函数f(x)=x3+2x2+x(x≤0)是k类函数,则n-m的取值范围是
 

查看答案和解析>>

同步练习册答案