精英家教网 > 高中数学 > 题目详情
已知平面上的曲线C及点P,在C上任取一点Q,定义线段PQ长度的最小值为点P到曲线C的距离,记作d(P,C).若曲线C1表示直线x=-
1
2
,曲线C2表示射线y=0(x≥
1
2
),则点集{P|d(P,C1)=d(P,C2)}所表示的图形是(  )
A、
B、
C、
D、
考点:曲线与方程
专题:综合题,函数的性质及应用
分析:当-1≤y≤1时,点集为{P|d(P,C1)=|PC|},当y≤-1或y≥1时,点集{P|d(P,C1)=d(P,C2)},确定表示的图形,即可得出结论.
解答: 解:设P(x,y),点A(0,-1),B(0,1),C(
1
2
,0)

当-1≤y≤1时,点集为{P|d(P,C1)=|PC|},表示的图形是抛物线y2=2x上的一段,其中 0≤x≤
1
2

当y≤-1或y≥1时,点集{P|d(P,C1)=d(P,C2)},表示的图形分别是直线x=-
1
2
与x轴正方向夹角的平分线上的一条射线,即y=x+
1
2
(x≥
1
2
)
y=-x-
1
2
(x≥
1
2
)
.对比选项知A正确.
故选:A.
点评:本题考查了分段函数的解析式的求法及其图象的作法,对于分段函数一般选用数形结合和分类讨论的数学思想进行解题.根据不同的范围研究不同的解析式,从而选定用分段函数来表示.属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a为实数,函数f(x)=3x2+(x-a)|x-a|
(1)若f(0)≥2,求a的取值范围;
(2)求f(x)的最小值;
(3)设函数h(x)=f(x),x∈(a,+∞),求不等式h(x)≥2的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m>0,n>0,向量
a
=(1,1),
b
=(m,n-1),且
a
b
,则
2
m
+
4
n
的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩形 A BCD的周长为18,把它沿图中的虚线折成正六棱柱,当这个正六棱柱的体积最大时,它的外接球的表面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=2cosx(x∈[-π,π])的图象大致为(  )
A、
B、
C、
D、

查看答案和解析>>

科目:高中数学 来源: 题型:

考察某校高三年级男生的身高,随机抽取40名高三男生,实测身高数据(单位:cm)
如下:

(1)作出频率分布表;
(2)在(1)的基础上画出频率分布直方图;
(3)估计身高不大于160cm的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:四棱锥S-ABCD的底面是边长为2的正方形,点S,A,B,C,D均在半径为
3
的同一半球面上,则当四棱锥S-ABCD的体积最大时,底面ABCD的中心与顶点S之间的距离是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是等差数列,若2a7-a5-3=0,则a9的值是(  )
A、9B、6C、3D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

计算下列定积分,并从几何上解释这些值分别表示什么
(1)
0
-1
x3dx;
(2)
1
-1
x3dx;
(3)
2
-1
x3dx.

查看答案和解析>>

同步练习册答案