精英家教网 > 高中数学 > 题目详情
1.已知{an}为等差数列,且a5=14,a7=20.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}的通项公式为bn=$\frac{1}{{{a}_{n}a}_{n+1}}$,求数列{bn}的前n项和Sn

分析 (I)设等差数列{an}的公差为d,由a5=14,a7=20.可得$\left\{\begin{array}{l}{{a}_{1}+4d=14}\\{{a}_{1}+6d=20}\end{array}\right.$,解出即可得出;
(II)bn=$\frac{1}{{{a}_{n}a}_{n+1}}$=$\frac{1}{(3n-1)(3n+2)}$=$\frac{1}{3}(\frac{1}{3n-1}-\frac{1}{3n+2})$,利用“裂项求和”即可得出.

解答 解:(I)设等差数列{an}的公差为d,
∵a5=14,a7=20.
∴$\left\{\begin{array}{l}{{a}_{1}+4d=14}\\{{a}_{1}+6d=20}\end{array}\right.$,解得a1=2,d=3.
∴an=2+3(n-1)=3n-1.
(II)bn=$\frac{1}{{{a}_{n}a}_{n+1}}$=$\frac{1}{(3n-1)(3n+2)}$=$\frac{1}{3}(\frac{1}{3n-1}-\frac{1}{3n+2})$,
∴数列{bn}的前n项和Sn=$\frac{1}{3}[(\frac{1}{2}-\frac{1}{5})$+$(\frac{1}{5}-\frac{1}{8})$+…+$(\frac{1}{3n-1}-\frac{1}{3n+2})]$
=$\frac{1}{3}(\frac{1}{2}-\frac{1}{3n+2})$
=$\frac{n}{2(3n+2)}$.

点评 本题考查了等差数列的通项公式、“裂项求和”,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知函数y=f(1-x)的图象如图所示,则y=f(1+x)的图象为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=lnx-(x-1)(a为常数).
(1)求函数f(x)的极值;
(2)试证明:对任意的n∈N*,都有ln(1+$\frac{1}{n}$)$<\frac{1}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求函数f(x)=(x+1)3ex+1的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.不等式3x2+5x-2<0的解集为(  )
A.(-∞,-2)∪($\frac{1}{3}$,+∞)B.(-2,$\frac{1}{3}$)C.[-2,$\frac{1}{3}$)D.(-2,$\frac{1}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下面命题:①{1,2,3,4}是由四个元素组成的集合;②集合{0}表示仅有一个数“0”组成的集合;③集合{1,2,3}与{3,1,2}是同一个集合;④集合{小于1的正有理数}是一个有限集,其中正确的是(  )
A.①,②,③B.②,③,④C.③,④D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设函数f(x)=$\frac{{e}^{x}}{x}$.
(Ⅰ)求曲线在(-1,f(-1))处的切线方程;
(Ⅱ)若k>0,求不等式f′(x)+k(1-x)f(x)>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数y=sin(ωx+$\frac{π}{4}$)(ω>0)的最小正周期为$\frac{2π}{5}$,则ω等于(  )
A.5B.C.$\frac{4}{5}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=2sin(2-3x)的最小正周期为$\frac{2π}{3}$.

查看答案和解析>>

同步练习册答案