【题目】一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了该种药用昆虫的6组观测数据如下表:
温度x/℃ | 21 | 23 | 24 | 27 | 29 | 32 |
产卵数y/个 | 6 | 11 | 20 | 27 | 57 | 77 |
经计算得:
,,线性回归模型的残差平方和,,
其中分别为观测数据中的温度和产卵数,
(1)若用线性回归模型,求y关于x的回归方程(精确到0.1);
(2)若用非线性回归模型求得y关于x的回归方程为,且相关指数.
①试与1中的回归模型相比,用说明哪种模型的拟合效果更好.
②用拟合效果好的模型预测温度为35℃时该用哪种药用昆虫的产卵数(结果取整数)
附:一组数据其回归直线的斜率和截距的最小二乘估计为,;相关指数.
科目:高中数学 来源: 题型:
【题目】已知等比数列{an}的各项均为正数,2a2﹣5a1=3,a3a7=9a42;
(1)求数列{an}的通项公式;
(2)设bn=anlog3an,求数列{bn}的前n项和Sn.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,且.
(1)若函数在上恒有意义,求的取值范围;
(2)是否存在实数,使函数在区间上为增函数,且最大值为?若存在求出的值,若不存在请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下图为某仓库一侧墙面的示意图,其下部是矩形ABCD,上部是圆弧AB,该圆弧所在的圆心为O,为了调节仓库内的湿度和温度,现要在墙面上开一个矩形的通风窗EFGH(其中E,F在圆弧AB上,G,H在弦AB上).过O作,交AB 于M,交EF于N,交圆弧AB于P,已知(单位:m),记通风窗EFGH的面积为S(单位:)
(1)按下列要求建立函数关系式:
(i)设,将S表示成的函数;
(ii)设,将S表示成的函数;
(2)试问通风窗的高度MN为多少时,通风窗EFGH的面积S最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,且.
(1)若函数在上恒有意义,求的取值范围;
(2)是否存在实数,使函数在区间上为增函数,且最大值为?若存在求出的值,若不存在请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示的“8”字形曲线是由两个关于x轴对称的半圆和一个双曲线的一部分组成的图形,其中上半个圆所在圆方程是x2+y2﹣4y﹣4=0,双曲线的左、右顶点A、B是该圆与x轴的交点,双曲线与半圆相交于与x轴平行的直径的两端点.
(1)试求双曲线的标准方程;
(2)记双曲线的左、右焦点为F1、F2,试在“8”字形曲线上求点P,使得∠F1PF2是直角.
(3)过点A作直线l分别交“8”字形曲线中上、下两个半圆于点M、N,求|MN|的最大长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在正方体ABCD﹣A1B1C1D1中,AM⊥平面A1BD,垂足为M,以下四个结论中正确的个数为( )
①AM垂直于平面CB1D1;
②直线AM与BB1所成的角为45°;
③AM的延长线过点C1;
④直线AM与平面A1B1C1D1所成的角为60°
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com