精英家教网 > 高中数学 > 题目详情

【题目】某科研小组研究发现:一棵水蜜桃树的产量(单位:百千克)与肥料费用(单位:百元)满足如下关系:,且投入的肥料费用不超过5百元.此外,还需要投入其他成本(如施肥的人工费等)百元.已知这种水蜜桃的市场售价为16元/千克(即16百元/百千克),且市场需求始终供不应求.记该棵水蜜桃树获得的利润为(单位:百元).

(1)求利润函数的函数关系式,并写出定义域;

(2)当投入的肥料费用为多少时,该水蜜桃树获得的利润最大?最大利润是多少?

【答案】(1)见解析(2)当投入的肥料费用为300元时,种植该果树获得的最大利润是4300元.

【解析】

试题(1)根据利润等于收入减成本列式: 投入的肥料费用不超过5百元及实际意义得定义域,(2)利用基本不等式求最值:先配凑: 再根据一正二定三相等求最值.

试题解析:解:(1) ).

(2)

.

当且仅当时,即时取等号.

.

答:当投入的肥料费用为300元时,种植该果树获得的最大利润是4300元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设f(x)=|x﹣1|+|x+1|.
(1)求f(x)≤x+2的解集;
(2)若不等式f(x)≥ 对任意实数a≠0恒成立,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某租赁公司拥有汽车100.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费元,未租出的车每辆每月需要维护费.

1)当每辆车的月租金定为元时,能租出多少辆车?

2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数恒过定点

(1)求实数

(2)在(1)的条件下,将函数的图象向下平移个单位,再向左平移个单位后得到函数,设函数的反函数为,求的解析式.

(3)对于定义在上的函数,若在其定义域内,不等式恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为常数.

(1)求函数的单调区间;

(2)若的一条切线,求的值;

(3)已知为整数,若对任意,都有恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等比数列的公比,前项和为,且满足.分别是一个等差数列的第1项,第2项,第5项.

(1)求数列的通项公式;

(2)设,求数列的前项和

(3)若的前项和为,且对任意的满足,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高三某班有60名学生(其中女生有20名),三好学生占,而且三好学生中女生占一半,现在从该班任选一名学生参加座谈会,则在已知没有选上女生的条件下,选上的是三好学生的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】江苏省南通市2018届高三最后一卷 --- 备用题数学试题已知函数,其中.

(1)当时,求函数处的切线方程;

(2)若函数存在两个极值点,求的取值范围;

(3)若不等式对任意的实数恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的且以2为周期的偶函数,当0≤x≤1时,f(x)=x2 , 如果直线y=x+a与曲线y=f(x)恰有两个不同的交点,则实数a的值为(
A.2k(k∈Z)
B.2k或2k+ (k∈Z)
C.0
D.2k或2k﹣ (k∈Z)

查看答案和解析>>

同步练习册答案