精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=x+$\frac{m}{x}$,且此函数图象过点(1,2).
(Ⅰ)求实数m的值;
(Ⅱ)判断函数f(x)的奇偶性并证明;
(Ⅲ)讨论函数f(x)在(0,1)上的单调性,并证明你的结论.

分析 (Ⅰ)利用函数f(x)=x+$\frac{m}{x}$,且此函数图象过点(1,2),代入计算求实数m的值;
(Ⅱ)利用函数f(x)的奇偶性的定义,判断与证明;
(Ⅲ)利用导数证明函数f(x)在(0,1)上的单调性.

解答 解:(Ⅰ)∵函数f(x)=x+$\frac{m}{x}$,且此函数图象过点(1,2),
∴2=1+m,∴m=1;
(Ⅱ)f(x)=x+$\frac{1}{x}$,∴f(-x)=-x+$\frac{1}{-x}$=-f(x),∴函数是奇函数;
 (Ⅲ)∵x∈(0,1),∴f′(x)=$\frac{{x}^{2}-1}{{x}^{2}}$<0,∴函数是单调递减函数.

点评 本题考查求函数的解析式,考查函数的单调性、奇偶性,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.利用余弦曲线,写出满足cosx>0,x∈[0,2π]的x的区间是[0,$\frac{π}{2}$)∪($\frac{3π}{2}$,2π].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知定义在R上的函数f(x)=m-$\frac{2}{{{5^x}+1}}$
(1)判断并证明函数f(x)的单调性;
(2)若f(x)是奇函数,求m的值;
(3)若f(x)的值域为D,且D⊆[-3,1],求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设集合$A=\left\{{x\left|{{x^2}≤1}\right.}\right\},B=\left\{{x\left|{\frac{1}{x}≥0}\right.}\right\}$,则A∩B=(  )
A.(-∞,1]B.[0,1]C.(0,1]D.(-∞,0)∪(0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.指数函数f(x)=ax(a>0,a≠1)的图象经过点(2,16),则实数a的值是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.有下列命题:
①$y=cos(x-\frac{π}{4})cos(x+\frac{π}{4})$的图象关于直线x=$\frac{π}{2}$对称;
②y=$\frac{x+3}{x-1}$的图象关于点(-1,1)对称;
③关于x的方程ax2-2ax-1=0有且仅有一个实根,则a=-1;
④满足条件AC=$\sqrt{3}$,∠B=60°,AB=1的三角形△ABC有两个.
其中真命题的序号是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设数列{an}的前n项和Sn=n2,则a9的值为(  )
A.15B.17C.49D.64

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点分别为F1,F2,P为椭圆上一点,且∠F1PF2=120°,则椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率的取值范围为[$\frac{\sqrt{3}}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在等腰梯形ABCD中,AB∥CD,AD=DC=a,∠ABC=60°,平面ACEF⊥平面ABCD,四边形ACEF是平行四边形,点M在线段EF上.
(1)求证:BC⊥平面ACEF;
(2)当FM为何值时,AM∥平面BDE?证明你的结论.

查看答案和解析>>

同步练习册答案