精英家教网 > 高中数学 > 题目详情

【题目】设Sn为数列{an}的前n项和,且a1= , an+1=2Sn﹣2n , 则a8=

【答案】-601
【解析】∵an+1=2Sn﹣2n
∴当n=1时,a2=2a1﹣2=1.
∴当n≥2时,an=2Sn﹣1﹣2n﹣1 , ∴an+1﹣an=2an﹣2n﹣1 , ∴an+1=3an﹣2n﹣1
∴a3=3a2﹣2=1,a4=3a3﹣4=﹣1,a5=3a4﹣8=﹣11,a6=3a5﹣16=﹣49,a7=3a6﹣32=﹣179,a8=3a7﹣64=﹣601.
所以答案是:﹣601.
【考点精析】认真审题,首先需要了解数列的通项公式(如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.

Ⅰ)由折线图看出,可用线性回归模型拟合yt的关系,请用相关系数加以说明;

Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.

附注:

参考数据:

≈2.646.

参考公式:相关系数

回归方程中斜率和截距的最小二乘估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体, , ,且两两垂直.给出下列四个命题:

①三棱锥的体积为定值;

②经过四点的球的直径为;

③直线∥平面

④直线所成的角为

其中真命题的个数是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位招聘面试,每次从试题库随机调用一道试题,若调用的是A类型试题,则使用后该试题回库,并增补一道A类试题和一道B类型试题入库,此次调题工作结束;若调用的是B类型试题,则使用后该试题回库,此次调题工作结束.试题库中现共有n+m道试题,其中有n道A类型试题和m道B类型试题,以X表示两次调题工作完成后,试题库中A类试题的数量.
(Ⅰ)求X=n+2的概率;
(Ⅱ)设m=n,求X的分布列和均值(数学期望)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥P﹣ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,PC为球O的直径,该三棱锥的体积为 , 则球O的表面积为(  )
A.4π
B.8π
C.12π
D.16π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在各项均为正数的等比数列,且成等差数列.

(Ⅰ)求数列的通项公式

(Ⅱ)若数列满足为数列的前项和. 设,当最大时,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}中,an=n2-kn(n∈N*),且{an}单调递增,则k的取值范围是(  )

A. (-∞,2] B. (-∞,2) C. (-∞,3] D. (-∞,3)

【答案】D

【解析】

根据函数的单调性可得an+1﹣an0对于n∈N*恒成立,建立关系式,解之即可求出k的取值范围.

数列{an},且{an}单调递增

∴an+1﹣an0对于n∈N*恒成立即(n+1)2﹣k(n+1)﹣(n2﹣kn)=2n+1﹣k>0对于n∈N*恒成立

∴k<2n+1对于n∈N*恒成立,即k<3

故选:D.

【点睛】

本题主要考查了数列的性质,本题易错误地求导或把它当成二次函数来求解,注意n的取值是解题的关键,属于易错题.

型】单选题
束】
8

【题目】已知等差数列{an}的前n项和为Sn,S4=40,Sn=210,Sn-4=130,则n=(  )

A.12 B.14 C.16 D.18

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设不等式mx2-2x-m+1<0对于满足|m|≤2的一切m的值都成立,求x的取值范围.

【答案】

【解析】

令f(m)=m(x2﹣1)﹣2x+1,由条件f(m)0对满足|m|≤2的一切m的值都成立,利用一次函数的单调性可得:f(﹣2)<0,f(2)<0.解出即可.

令f(m)=m(x2﹣1)﹣2x+1,由条件f(m)0对满足|m|≤2的一切m的值都成立,

则需要f(﹣2)<0,f(2)<0.

解不等式组,解得

x的取值范围是

【点睛】

本题考查了一次函数的单调性、一元二次不等式的解法,考查了转化方法,考查了推理能力与计算能力,属于中档题.

型】解答
束】
21

【题目】某厂有一批长为18m的条形钢板,可以割成1.8m和1.5m长的零件.它们的加工费分别为每个1元和0.6元.售价分别为20元和15元,总加工费要求不超过8元.问如何下料能获得最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= , g(x)=asin(x+π)﹣2a+2(a>0),给出下列结论:
①函数f(x)的值域为[0,];
②函数g(x)在[0,1]上是增函数;
③对任意a>0,方程f(x)=g(x)在区间[0,1]内恒有解;
④若x1∈R,x2∈[0,1],使得f(x1)=g(x2)成立,则实数a的取值范围是:≤a≤
其中所有正确结论的序号为

查看答案和解析>>

同步练习册答案