精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)当时,判断函数的奇偶性并证明;

(2)讨论的零点个数.

【答案】详见解析; 详见解析.

【解析】试题分析:(1)利用奇偶性的定义判断并证明得为奇函数;(2)分参得,判断其单调性和值域,得零点个数的情况。

试题解析:

解法一:(Ⅰ)当时,函数,该函数为奇函数.

证明如下:

依题意得函数的定义域为R

所以,函数为奇函数.

(Ⅱ)因为

所以

因为函数上单调递增且值域为

所以, 上单调递减且值域为

所以,当时,函数无零点;

时,函数有唯一零点.

解法二:(Ⅰ)当时,函数,该函数为奇函数.

证明如下:

依题意有函数定义域为R

=

.

所以,函数为奇函数.

(Ⅱ)问题等价于讨论方程=0的解的个数。

,得

时,得,即方程无解;

时,得

时,方程有唯一解;

时,方程无解.

综上所述,当时,函数无零点;

时,函数有唯一零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某企业常年生产一种出口产品,根据预测可知,进入21世纪以来,该产品的产量平稳增长.记2009年为第1年,且前4年中,第年与年产量万件之间的关系如下表所示:

近似符合以下三种函数模型之一: = .

(1)找出你认为最适合的函数模型,并说明理由,然后选取其中你认为最适合的数据求出相应的解析式;

(2)因遭受某国对该产品进行反倾销的影响,2015年的年产量比预计减少,试根据所建立的函数模型,确定2015年的年产量.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=aln(x+1)+ x2﹣x,其中a为实数.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若函数f(x)有两个极值点x1 , x2 , 且x1<x2 , 求证:2f(x2)﹣x1>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,△ABC为正三角形,CE⊥平面ABC,BD∥CE且CE=AC=2BD,试在AE上确定一点M,使得DM∥平面ABC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过点A(0,1)且斜率为k的直线l与圆C:(x﹣2)2+(y﹣3)2=1交于点M,N两点.
(1)求k的取值范围;
(2)请问是否存在实数k使得 (其中O为坐标原点),如果存在请求出k的值,并求|MN|;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数
(1)求 极值;
(2)当 时, ,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h的有20人,不超过100km/h的有25人.
(1)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.

平均车速超过
100km/h人数

平均车速不超过
100km/h人数

合计

男性驾驶员人数

女性驾驶员人数

合计


(2)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为 ,若每次抽取的结果是相互独立的,求 的分布列和数学期望.
参考公式与数据: ,其中

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )
A.函数 的图象与直线 可能有两个交点;
B.函数 与函数 是同一函数;
C.对于 上的函数 ,若有 ,那么函数 内有零点;
D.对于指数函数 ( )与幂函数 ( ),总存在一个 ,当 时,就会有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,△ABC,AB=8,BC=10,AC=6,DB⊥平面ABC,AE∥FC∥BD,BD=3,FC=4,AE=5,求此几何体的体积.

查看答案和解析>>

同步练习册答案