【题目】已知函数.
(1)当时,判断函数的奇偶性并证明;
(2)讨论的零点个数.
【答案】(Ⅰ)详见解析; (Ⅱ)详见解析.
【解析】试题分析:(1)利用奇偶性的定义,判断并证明得为奇函数;(2)分参得,判断其单调性和值域,得零点个数的情况。
试题解析:
解法一:(Ⅰ)当时,函数,该函数为奇函数.
证明如下:
依题意得函数的定义域为R,
又
所以,函数为奇函数.
(Ⅱ)因为
所以 ,
因为函数在上单调递增且值域为
所以, 在上单调递减且值域为
所以,当或时,函数无零点;
当时,函数有唯一零点.
解法二:(Ⅰ)当时,函数,该函数为奇函数.
证明如下:
依题意有函数定义域为R,
又
=
即.
所以,函数为奇函数.
(Ⅱ)问题等价于讨论方程=0的解的个数。
由,得
当时,得,即方程无解;
当时,得,
当即时,方程有唯一解;
当即或时,方程无解.
综上所述,当或时,函数无零点;
当时,函数有唯一零点.
科目:高中数学 来源: 题型:
【题目】某企业常年生产一种出口产品,根据预测可知,进入21世纪以来,该产品的产量平稳增长.记2009年为第1年,且前4年中,第年与年产量万件之间的关系如下表所示:
若近似符合以下三种函数模型之一: === .
(1)找出你认为最适合的函数模型,并说明理由,然后选取其中你认为最适合的数据求出相应的解析式;
(2)因遭受某国对该产品进行反倾销的影响,2015年的年产量比预计减少,试根据所建立的函数模型,确定2015年的年产量.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=aln(x+1)+ x2﹣x,其中a为实数.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)若函数f(x)有两个极值点x1 , x2 , 且x1<x2 , 求证:2f(x2)﹣x1>0.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过点A(0,1)且斜率为k的直线l与圆C:(x﹣2)2+(y﹣3)2=1交于点M,N两点.
(1)求k的取值范围;
(2)请问是否存在实数k使得 (其中O为坐标原点),如果存在请求出k的值,并求|MN|;如果不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了研究家用轿车在高速公路上的车速情况,交通部门对100名家用轿车驾驶员进行调查,得到其在高速公路上行驶时的平均车速情况为:在55名男性驾驶员中,平均车速超过100km/h的有40人,不超过100km/h的有15人.在45名女性驾驶员中,平均车速超过100km/h的有20人,不超过100km/h的有25人.
(1)完成下面的列联表,并判断是否有99.5%的把握认为平均车速超过100km/h的人与性别有关.
平均车速超过 | 平均车速不超过 | 合计 | |
男性驾驶员人数 | |||
女性驾驶员人数 | |||
合计 |
(2)以上述数据样本来估计总体,现从高速公路上行驶的大量家用轿车中随机抽取3辆,记这3辆车中驾驶员为男性且车速超过100km/h的车辆数为 ,若每次抽取的结果是相互独立的,求 的分布列和数学期望.
参考公式与数据: ,其中
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A.函数 的图象与直线 可能有两个交点;
B.函数 与函数 是同一函数;
C.对于 上的函数 ,若有 ,那么函数 在 内有零点;
D.对于指数函数 ( )与幂函数 ( ),总存在一个 ,当 时,就会有 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com