【题目】已知函数.
(Ⅰ)当时,讨论函数的单调区间;
(Ⅱ)若对任意的和恒成立,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】圆的方程为:,为圆上任意一点,过作轴的垂线,垂足为,点在上,且.
(1)求点的轨迹的方程;
(2)过点的直线与曲线交于、两点,点的坐标为,的面积为,求的最大值,及直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知依次满足
(1)求点的轨迹;
(2)过点作直线交以为焦点的椭圆于两点,线段的中点到轴的距离为,且直线与点的轨迹相切,求该椭圆的方程;
(3)在(2)的条件下,设点的坐标为,是否存在椭圆上的点及以为圆心的一个圆,使得该圆与直线都相切,如存在,求出点坐标及圆的方程,如不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在某校举行的航天知识竞赛中,参与竞赛的文科生与理科生人数之比为,且成绩分布在,分数在以上(含)的同学获奖. 按文理科用分层抽样的方法抽取人的成绩作为样本,得到成绩的频率分布直方图(见下图).
(1)求的值,并计算所抽取样本的平均值(同一组中的数据用该组区间的中点值作代表);
(2)填写下面的列联表,能否有超过的把握认为“获奖与学生的文理科有关”?
文科生 | 理科生 | 合计 | |
获奖 | |||
不获奖 | |||
合计 |
附表及公式:
,其中
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率;先由计算器给出0到9之间取整数值的随机数,指定0、1、2、3表示没有击中目标, 4、5、6、7、8、9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数,根据以下数据估计该射击运动员射击4次至少击中3次的概率为( )
7527 0293 7140 9857 0347 4373 8636 6947 1417 4698
0371 6233 2616 8045 6011 3661 9597 7424 7610 4281
A.0.4B.0.45C.0.5D.0.55
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】40名学生某次数学考试成绩(单位:分)的频率分布直方图如下:
(1)求频率分布直方图中的值;
(2)根据频率分布直方图求出样本数据的中位数 (保留小数点后两位数字)和众数;
(3)从成绩在的学生中任选3人,求这3人的成绩都在中的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,过椭圆E:(a>b>0)的左焦点F1作x轴的垂线交椭圆E于P,Q两点,点A,B是椭圆E的顶点,且AB∥OP,F2为右焦点,△PF2Q的周长为8.
(1)求椭圆E的方程;
(2)过点F1作直线l与椭圆E交于C,D两点,若△OCD的面积为,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图(一),在直角梯形ABCP中,CP∥AB,CP⊥BC,AB=BC=CP,D是CP的中点,将△PAD沿AD折起,使点P到达点P′的位置得到图(二),点M为棱P′C上的动点.
(1)当M在何处时,平面ADM⊥平面P′BC,并证明;
(2)若AB=2,∠P′DC=135°,证明:点C到平面P′AD的距离等于点P′到平面ABCD的距离,并求出该距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com