精英家教网 > 高中数学 > 题目详情

(本小题12分) 在锐角中,分别是内角所对的边,且
(1)求角的大小;   
(2)若,且,求的面积。

(1) (2)

解析试题分析:(1)根据正弦定理,把已知条件转化为A的函数式,即,由三角函数的性质求解即可.(2)由可求得,再由余弦定理和,可求得bc=6,最后由三角形面积公式求解即可.
试题解析:(1)由正弦定理和已知条件可得 ,即,又因为A是锐角,所以= .
(2)由可得,即,又因为=,所以7=-2bccos,解得bc=6,.     
考点:1.正弦定理和余弦定理;2.三角形的面积公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

中,内角的对边分别为,且.
(1)求角的大小;
(2)若,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

中,角的对边为且;
(Ⅰ)求的值;
(Ⅱ)若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,设角A,B,C的对边分别为a,b,c,且
(1)求角A的大小;
(2)若,求边c的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在△ABC中,BC=a,AC=b,a、b是方程的两个根,且,求△ABC的面积及AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

钓鱼岛及其附属岛屿是中国固有领土,如图:点A、B、C分别表示钓鱼岛、南小岛、黄尾屿,点C在点A的北偏东47°方向,点B在点C的南偏西36°方向,点B在点A的南偏东79°方向,且A、B两点的距离约为3海里.

(1)求A、C两点间的距离;(精确到0.01)
(2)某一时刻,我国一渔船在A点处因故障抛锚发出求救信号.一艘R国舰艇正从点C正东10海里的点P处以18海里/小时的速度接近渔船,其航线为PCA(直线行进),而我东海某渔政船正位于点A南偏西60°方向20海里的点Q处,收到信号后赶往救助,其航线为先向正北航行8海里至点M处,再折向点A直线航行,航速为22海里/小时.渔政船能否先于R国舰艇赶到进行救助?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,甲船以每小时海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于处时,乙船位于甲船的北偏西方向的处,此时两船相距海里,当甲船航行分钟到达处时,乙船航行到甲船的北偏西方向的处,此时两船相距海里,问乙船每小时航行多少海里?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设△ABC的内角A,B,C的对边分别为a,b,c,(a+b+c)(a-b+c)=ac.
(Ⅰ)求B;
(Ⅱ)若sinAsinC=,求C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

ABC中内角ABC的对边分别为abc,已知abcos Ccsin B.
(1)求B
(2)若b=2,求△ABC面积的最大值.

查看答案和解析>>

同步练习册答案