精英家教网 > 高中数学 > 题目详情
2.已知A(-1,0),B(1,0),动点M满足∠AMB=2θ,|$\overrightarrow{AM}$|•|$\overrightarrow{BM}$|•cos2θ=3,设M的轨迹为曲线C.
(1)求曲线C的方程;
(2)过A的直线l1与曲线C交于E、F两点,过B与l1平行的直线l2与曲线C交于G、H两点,求四边形EFGH的面积的最大值.

分析 (1)由余弦定理得|AM|2+|BM|2-2|AM||BM|cos2θ=4,及$|{\overrightarrow{AM}}|•|{\overrightarrow{BM}}|{cos^2}θ=3$得$|{\overrightarrow{AM}}|+|{\overrightarrow{BM}}|=4$,因此点M的轨迹是以A,B为焦点的椭圆;
(2)由题意得四边形EFGH是平行四边形,结合对称性得:SEFGH=4SOEF,设直线EF的方程为:x=my-1,E(x1,y1),F(x2,y2),由SOEF=$\frac{1}{2}$|OA||y1-y2|=6$\sqrt{\frac{{m}^{2}+1}{(4+3{m}^{2})^{2}}}$求出SOEF的最大值即可.

解答 解:(1)设M(x,y),在△MAB中,|AB|=1,∠AMB=2θ,
由余弦定理得|AM|2+|BM|2-2|AM||BM|cos2θ=4,
即(|AM|+|BM|)2-2|AM||BM|-2|AM||BM|cos2θ
=4(|AM|+|BM|)2-2|AM||BM|(1+cos2θ)
=4(|AM|+|BM|)2-4|AM||BM|cos2θ=4
又$|{\overrightarrow{AM}}|•|{\overrightarrow{BM}}|{cos^2}θ=3$,所以$|{\overrightarrow{AM}}|+|{\overrightarrow{BM}}|=4$,
由于$|{\overrightarrow{AM}}|+|{\overrightarrow{BM}}|=4>2=|{AB}|$,
因此点M的轨迹是以A,B为焦点的椭圆,同时该椭圆的长半轴a=2,焦距2c=2,
所以,曲线C的方程为$\frac{x^2}{4}+\frac{y^2}{3}=1$;           
(2)由题意得四边形EFGH是平行四边形,结合对称性得:
SEFGH=4SOEF
设直线EF的方程为:x=my-1,E(x1,y1),F(x2,y2),
把x=my-1代入方程为$\frac{x^2}{4}+\frac{y^2}{3}=1$得(4+3m2)y2-6my-9=0
y1+y2=$\frac{6m}{4+3{m}^{2}}$,y1y2=$\frac{-9}{4+3{m}^{2}}$;且△>0.
SOEF=$\frac{1}{2}$|OA||y1-y2|=6$\sqrt{\frac{{m}^{2}+1}{(4+3{m}^{2})^{2}}}$
令  ${m}^{2}+1=t,\\;\\;t≥1$,则SOEF=6$\sqrt{\frac{t}{(3t+1)^{2}}}=6×\sqrt{\frac{1}{9t+\frac{1}{t}+6}}$;
又g(t)=9t+$\frac{1}{t}$在[1,+∞)递增,∴g(t)≥g(1)=10,
SEFGH=4SOEF≥4×6×$\frac{1}{4}$=6
∴四边形EFGH的面积的最大值为6

点评 本题考查了直线与椭圆的位置关系,及面积的最值问题,关键要掌握基本的运算技巧,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.动点M与定点F(5,0)的距离和它到直线x=$\frac{9}{5}$的距离的比为$\frac{5}{3}$,则点M的轨迹方程为$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知抛物线C:y2=8x焦点为F,准线为l,P是l上一点,Q是直线PF与C的一个交点,O是坐标原点,若$\overrightarrow{FP}=4\overrightarrow{FQ}$,则|QO|=(  )
A.2B.$\frac{3}{2}$C.$\frac{4}{3}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=ex-ln(x+a)(a∈R)有唯一的零点x0,则(  )
A.-1<x0<-$\frac{1}{2}$B.-$\frac{1}{2}$<x0<-$\frac{1}{4}$C.-$\frac{1}{4}$<x0<0D.0<x0<$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$\overrightarrow{{e}_{1}}$、$\overrightarrow{{e}_{2}}$是夹角为$\frac{π}{3}$的单位向量,若$\overrightarrow{a}$=$\overrightarrow{{e}_{1}}$+3$\overrightarrow{{e}_{2}}$,$\overrightarrow{b}$=2$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$,则向量$\overrightarrow{a}$在$\overrightarrow{b}$方向上的投影为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.$\sqrt{3}$D.$\frac{3\sqrt{13}}{26}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.极坐标系下,直线l:ρsin(120°-α)=sin60°的倾斜角为120°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设数列{an}的前n项和为Sn,且满足Sn+2an=3(n∈N*),设数列{bn}满足b1=a1,bn=$\frac{2{b}_{n-1}}{{b}_{n-1}+2}$(n≥2).
(1)求数列{an}、{bn}的通项公式;
(2)设${c_n}=\frac{a_n}{b_n}$求数列{cn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知z1=m2-(m2-3m)i,z2=(m2-4m+3)i+10(m∈R),若z1<z2,求实数m的取值范围为{3}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=cos(ωx+\frac{π}{3})(ω>0)$,图象上任意两条相邻对称轴间的距离为$\frac{π}{2}$.
(1)求函数f(x)的单调区间,对称中心;
(2)若关于x的方程2cos2x+mcosx+2=0在$x∈({0,\frac{π}{2}})$上有实数解,求实数m的取值范围.

查看答案和解析>>

同步练习册答案