分析 (1)连接AC,设AC与BD交于O点,则OM∥AF,由此能证明AF∥平面MBD.
(2)由OM∥AF,得OM⊥BD,又AC⊥BD,从而∠COM就是二面角M-BD-C的平面角.由此能求出二面角M-BD-C的余弦值.
解答 解:(1)证明:连接AC,设AC与BD交于O点,
在正方形ABCD中,O为AC的中点,
∵M是FC的中点,∴OM∥AF,
∵AF?平面MBD,OM⊆平面MBD,
∴AF∥平面MBD.
(2)由(1)知OM∥AF,
∵AF⊥BD,∴OM⊥BD,
又∵在正方形ABCD中,AC⊥BD,
∴∠COM就是二面角M-BD-C的平面角.
$MC=\frac{1}{2}FC=1$,
在正方形ABCD中,$OC=\sqrt{2},OM=\sqrt{O{C^2}+C{M^2}}=\sqrt{{{({\sqrt{2}})}^2}+{1^2}}=\sqrt{3}$,
∴$cos∠MOC=\frac{OC}{OM}=\frac{{\sqrt{2}}}{{\sqrt{3}}}=\frac{{\sqrt{6}}}{3}$.
∴二面角M-BD-C的余弦值为$\frac{\sqrt{6}}{3}$.
点评 本题考查线面垂直的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意空间思维能力的培养.
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{4}$ | B. | $\frac{3}{5}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{\sqrt{2}}}{2},\frac{{\sqrt{6}}}{2}$ | B. | $\frac{1}{2},\frac{{\sqrt{5}}}{2}$ | C. | $\frac{{\sqrt{3}}}{3},\sqrt{6}$ | D. | $\frac{{\sqrt{2}}}{4},\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com