精英家教网 > 高中数学 > 题目详情
已知圆M:(x-2+y2=,若椭圆C:+=1(a>b>0)的右顶点为圆M的圆心,离心率为
(I)求椭圆C的方程;
(II)已知直线l:y=kx,若直线l与椭圆C分别交于A,B两点,与圆M分别交于G,H两点(其中点G在线段AB上),且|AG|=|BH|,求k的值.
【答案】分析:(I)由圆心M得到.利用椭圆的离心率及b2=a2-c2即可得出椭圆的标准方程;
(II)把直线l的方程与椭圆的方程联立,消去y得到关于x的一元二次方程,利用根与系数的关系及弦长公式即可得到|AB|,利用垂径定理及半径、弦长的一半、弦心距三者之间的关系即可得到|GH|,进而得出k.
解答:解:(I)设椭圆的焦距为2c,由圆心M得到
,∴c=1.
∴b2=a2-c2=1.
所以椭圆C:
(II)设A(x1,y1),B(x2,y2).
由直线l与椭圆C交于两点A,B,则
消去y得到(1+2k2)x2-2=0,则x1+x2=0,
∴|AB|==
点M到直线l的距离
则|GH|=
显然,若点H也在线段AB上,则由对称性可知,直线y=kx就是y轴,矛盾.
∵|AG|=|BH|,∴|AB|=|GH|.

解得k2=1,即k=±1.
点评:熟练掌握椭圆与圆的标准方程及其性质、直线与曲线相交问题转化为把直线l的方程与曲线的方程联立得到一元二次方程、利用根与系数的关系及弦长公式、垂径定理及半径、弦长的一半、弦心距三者之间的关系是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知圆M:(x+数学公式2+y2=数学公式的圆心为M,圆N:(x-数学公式2+y2=的圆心为N,一动圆与圆M内切,与圆N外切.
(Ⅰ)求动圆圆心P的轨迹方程;
(Ⅱ)在(Ⅰ)所求轨迹上是否存在一点Q,使得∠MQN为钝角?若存在,求出点Q横坐标的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:0128 模拟题 题型:解答题

已知圆M:(x+2+y2=36,定点N(,0),点P为圆M上的动点,点Q在NP上,点G在MP上,且满足
(1)求点G的轨迹C的方程;
(2)过点(2,0)作直线l,与曲线C交于A、B两点,O是坐标原点,设是否存在这样的直线l,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线l的方程;若不存在,试说明理由。

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东聊城市东阿县曹植培训学校高三(上)12月月考数学试卷(解析版) 题型:解答题

(理)已知圆M:(x+2+y2=36,定点N(),点P为圆M上的动点,点G在MP上,且满足|GP|=|GN|
(1)求点G的轨迹C的方程;
(2)过点(2,0)作直线l,与曲线C交于A、B两点,O是坐标原点,设,是否存在这样的直线l,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线l的方程;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年福建省厦门市双十中学高考考前热身数学试卷(理科)(解析版) 题型:解答题

已知圆M:(x+2+y2=的圆心为M,圆N:(x-2+y2=的圆心为N,一动圆与圆M内切,与圆N外切.
(Ⅰ)求动圆圆心P的轨迹方程;
(Ⅱ)在(Ⅰ)所求轨迹上是否存在一点Q,使得∠MQN为钝角?若存在,求出点Q横坐标的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:2013年北京市海淀区高考数学一模试卷(理科)(解析版) 题型:解答题

已知圆M:(x-2+y2=r2=r2(r>0).若椭圆C:+=1(a>b>0)的右顶点为圆M的圆心,离心率为
(I)求椭圆C的方程;
(II)若存在直线l:y=kx,使得直线l与椭圆C分别交于A,B两点,与圆M分别交于G,H两点,点G在线段AB上,且|AG|=|BH|,求圆M半径r的取值范围.

查看答案和解析>>

同步练习册答案