精英家教网 > 高中数学 > 题目详情

【题目】是一个集合,是一个以的某些子集为元素的集合,且满足:(1属于属于;(2中任意多个元素的并集属于;(3中任意多个元素的交集属于,则称是集合上的一个拓补.已知集合,对于下面给出的四个集合

其中是集合上的拓补的集合的序号是______.(写出所有的拓补的集合的序号)

【答案】

【解析】

根据集合上的拓补的集合的定义,逐个验证即可.

对于①:,而,故①不是集合上的拓补的集合

对于②:,满足:(1属于属于;(2中任意多个元素的并集属于;(3中任意多个元素的交集属于,故②是集合上的拓补的集合

对于③:,而,故③不是集合上的拓补的集合

对于④:,满足:(1属于属于;(2中任意多个元素的并集属于;但不满足(3中任意多个元素的交集属于,故④不是集合上的拓补的集合.

故答案为:②.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数的定义域为,如果存在非零常数,对于任意,都有,则称函数似周期函数,非零常数为函数似周期”.现有下面四个关于似周期函数的命题:

①如果似周期函数似周期,那么它是周期为的周期函数;

②函数似周期函数

③函数似周期函数

④如果函数似周期函数,那么”.

其中是真命题的序号是___________.(写出所有满足条件的命题序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列的首项为p,公差为,对于不同的自然数,直线轴和指数函数的图象分别交于点(如图所示),记的坐标为,直角梯形的面积分别为,一般地记直角梯形的面积为.

1)求证:数列是公比绝对值小于1的等比数列;

2)设的公差,是否存在这样的正整数,构成以为边长的三角形?并请说明理由;

3)设的公差为已知常数,是否存在这样的实数p使得(1)中无穷等比数列各项的和?并请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设等差数列的前项和为,在同一个坐标系中,的部分图象如图所示,则( ).

A. 时,取得最大值 B. 时,取得最大值

C. 时,取得最小值 D. 时,取得最小值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量指数PM2.5(单位:μg/m3)表示每立方米空气中可入肺颗粒物的含量,这个值越高,就代表空气污染越严重:

日均浓度

空气质量级别

一级

二级

三级

四级

五级

六级

空气质量类型

轻度污染

中度污染

重度污染

严重污染

甲、乙两城市20132月份中的15天对空气质量指数PM2.5进行监测,获得PM2.5日均浓度指数数据如茎叶图所示:

(Ⅰ)根据你所学的统计知识估计甲、乙两城市15天内哪个城市空气质量总体较好?(注:不需说明理由)

(Ⅱ)在15天内任取1天,估计甲、乙两城市空气质量类别均为优或良的概率;

(Ⅲ)在乙城市15个监测数据中任取2个,设X为空气质量类别为优或良的天数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个国际象棋棋盘(由8×8个方格组成),其中有一个小方格因破损而被剪去(破损位置不确定).L形骨牌由三个相邻的小方格组成,如图所示.现要将这个破损的棋盘剪成数个L形骨牌,则(  )

A.至多能剪成19L形骨牌

B.至多能剪成20L形骨牌

C.最多能剪成21L形骨牌

D.前三个答案都不对

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区甲、乙、丙三所单位进行招聘,其中甲单位招聘2名,乙单位招聘2名,丙单位招聘1名,并且甲单位要至少招聘一名男生,现有3男3女参加三所单位的招聘,则不同的录取方案种数为( )

A.36B.72C.108D.144

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集,关于的不等式)的解集为.

1)求集合

2)设集合,若 中有且只有三个元素,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足:a1=,a2=,且a1a2+a2a3+…+anan+1=na1an+1对任何的正整数n都成立,则的值为(  )

A. 5032 B. 5044 C. 5048 D. 5050

查看答案和解析>>

同步练习册答案