精英家教网 > 高中数学 > 题目详情
已知椭圆C方程为,过右焦点斜率为1的直线到原点的距离为
(1)求椭圆方程.
(2)已知A,B方程为椭圆的左右两个顶点,T为椭圆在第一象限内的一点,l为点B且垂直x轴的直线,点S为直线AT与直线l的交点,点M为以SB为直径的圆与直线TB的另一个交点,求证:O,M,S三点共线.

【答案】分析:(1)写出过右焦点斜率为1的直线方程,由点到直线的距离公式求出原点到该直线的距离由距离等于求出c的值,则a可求,所以椭圆方程可求;
(2)设出直线AT的方程及点T的坐标,把直线方程和椭圆方程联立后化为关于x的一元二次方程,利用根与系数关系得到T点坐标,求出向量的坐标,由AT方程和直线x=得到S的坐标,因为,而BT⊥SM,所以得到O,M,S三点共线.
解答:解:(1)设右焦点为(c,0),则过右焦点斜率为1的直线方程为:y=x-c
则原点到直线的距离=
∴c=1,a=
∴方程为
(2)设直线AT方程为:y=k(x+)(k>0),设点T(x1,y1),
联立,得
,又∵A(),

又∵B(),∴
由圆的性质得:BT⊥SM,
所以,要证明O,M,S三点共线,只要证明BT⊥SO即可.
又∵S点的横坐标为
∴S点的坐标为


即BT⊥SO,又∵BT⊥SM,
∴O,M,S三点共线.
点评:本题考查了椭圆的标准方程,考查了直线与圆锥曲线的关系,考查了数学转化思想方法,训练了利用平面向量解决有关问题,考查了学生的运算能力,是难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C方程为x2+y2-8mx-(6m+2)y+6m+1=0(m∈R,m≠0),椭圆中心在原点,焦点在x轴上.
(1)证明圆C恒过一定点M,并求此定点M的坐标;
(2)判断直线4x+3y-3=0与圆C的位置关系,并证明你的结论;
(3)当m=2时,圆C与椭圆的左准线相切,且椭圆过(1)中的点M,求此时椭圆方程;在x轴上是否存在两定点A,B,使得对椭圆上任意一点Q(异于长轴端点),直线QA,QB的斜率之积为定值?若存在,求出A,B坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C方程为
x2
a2
+y2=1
,过右焦点斜率为1的直线到原点的距离为
2
2

(1)求椭圆方程.
(2)已知A,B方程为椭圆的左右两个顶点,T为椭圆在第一象限内的一点,l为点B且垂直x轴的直线,点S为直线AT与直线l的交点,点M为以SB为直径的圆与直线TB的另一个交点,求证:O,M,S三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C方程为
x2
a2
+y2=1
,过右焦点斜率为1的直线到原点的距离为
2
2

(1)求椭圆方程.
(2)已知A、B方程为椭圆的左右两个顶点,T为椭圆在第一象限内的一点,l为点B且垂直x轴的直线,点S为直线AT与直线l的交点,点M为以SB为直径的圆与直线TB的另一个交点,求证:
TB
-
SM
=
TB
-
SO

查看答案和解析>>

科目:高中数学 来源:2012-2013学年山东省青岛市即墨市高三(上)期末数学试卷(文科)(解析版) 题型:解答题

已知椭圆C方程为,过右焦点斜率为1的直线到原点的距离为
(1)求椭圆方程.
(2)已知A、B方程为椭圆的左右两个顶点,T为椭圆在第一象限内的一点,l为点B且垂直x轴的直线,点S为直线AT与直线l的交点,点M为以SB为直径的圆与直线TB的另一个交点,求证:

查看答案和解析>>

同步练习册答案