解答:解:(1)解:当x>0时,f(x)=e
x-1在(0,+∞)单调递增,且f(x)>0;
当x≤0时,f'(x)=x
2+2mx.
①若m=0,f′(x)=x
2≥0,f(x)=
x3在(-∞,0)上单调递增,且
f(x)=x3≤0.
又f(0)=0,∴f(x)在R上是增函数,无极植;
②若m<0,f′(x)=x(x+2m)>0,则f(x)=
x3+mx2在(-∞,0)单调递增,同①可知f(x)在R上也是增函数,无极值;(4分)
③若m>0,f(x)在(-∞,-2m)上单调递增,在(-2m,0)单调递减,
又f(x)在(0,+∞)上递增,故f(x)有极小值f(0)=0,(6分)
(2)解:当x>0时,先比较e
x-1与ln(x+1)的大小,
设h(x)=e
x-1-ln(x+1)(x>0)
h′(x)=
ex->0恒成立
∴h(x)在(0,+∞)是增函数,h(x)>h(0)=0
∴e
x-1-ln(x+1)>0即e
x-1>ln(x+1)
也就是f(x)>g(x),对任意x>0成立.
故当x
1-x
2>0时,f(x
1-x
2)>g(x
1-x
2)(10分)
再比较g(x
1-x
2)=ln(x
1-x
2+1)与g(x
1)-g(x
2)=ln(x
1+1)-ln(x
2+1)的大小.
g(x
1-x
2)-[g(x
1)-g(x
2)]
=ln(x
1-x
2+1)-ln(x
1+1)+ln(x
2+1)
=
ln=ln(+1]>0∴g(x
1-x
2)>g(x
1)-g(x
2)
∴f(x
1-x
2)>g(x
1-x
2)>g(x
1)-g(x
2).(13分)