精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 的右焦点为F,设直线l:x=5与x轴的交点为E,过点F且斜率为k的直线l1与椭圆交于A,B两点,M为线段EF的中点.
(I)若直线l1的倾斜角为 ,求△ABM的面积S的值;
(Ⅱ)过点B作直线BN⊥l于点N,证明:A,M,N三点共线.

【答案】解:(I)由题意可知:右焦点F(1,0),E(5,0),M(3,0),
设A(x1 , y1),B(x2 , y2),
由直线l1的倾斜角为 ,则k=1,
直线l1的方程y=x﹣1,即x=y+1,
,整理得:9x2+8﹣16=0.
则y1+y2=﹣ ,y1y2=﹣
△ABM的面积S,S= 丨FM丨丨y1﹣y2丨=丨y1﹣y2丨= =
∴△ABM的面积S的值
(Ⅱ)证明:设直线l1的方程为y=k(x﹣1),
,整理得:(4+5k2)x2﹣10k2x+5k2﹣20=0.
则x1+x2= ,x1x2=
直线BN⊥l于点N,则N(5,y2),
由kAM= ,kMN=
而y2(3﹣x1)﹣2(﹣y1)=k(x2﹣1)(3﹣x1)+2k(x1﹣1)=﹣k[x1x2﹣3(x1+x2)+5],
=﹣k( ﹣3× +5),
=0,
∴kAM=kMN
∴A,M,N三点共线.
【解析】(I)由题意,直线l1的x=y+1,代入椭圆方程,由韦达定理,弦长公式即可求得△ABM的面积S的值;(Ⅱ)直线y=k(x﹣1),代入椭圆方程,由韦达定理,利用直线的斜率公式,即可求得kAM=kMN , A,M,N三点共线.
【考点精析】通过灵活运用椭圆的标准方程,掌握椭圆标准方程焦点在x轴:,焦点在y轴:即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知一次函数f(x)=ax-2.

(1)当a=3时,解不等式|f(x)|<4;

(2)解关于x的不等式|f(x)|<4;

(3)若关于x的不等式|f(x)|≤3对任意x∈[0,1]恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,小明想将短轴长为2,长轴长为4的一个半椭圆形纸片剪成等腰梯形ABDE,且梯形ABDE内接于半椭圆,DEAB,AB为短轴,OC为长半轴

(1)求梯形ABDE上底边DE与高OH长的关系式;

(2)若半椭圆上到H的距离最小的点恰好为C点,求底边DE的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为的正方体中,分别为棱的中点,是线段的中点,若点分别为线段上的动点,则的最小值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,设为不同的两点,直线的方程为,设,其中均为实数.下列四个说法中:

①存在实数,使点在直线上;

②若,则过两点的直线与直线重合;

③若,则直线经过线段的中点;

④若,则点在直线的同侧,且直线与线段的延长线相交.

所有结论正确的说法的序号是______________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】张三同学从7岁起到13岁每年生日时对自己的身高测量后记录如表:

年龄 (岁)

7

8

9

10

11

12

13

身高 (cm)

121

128

135

141

148

154

160

(Ⅰ)求身高y关于年龄x的线性回归方程;
(Ⅱ)利用(Ⅰ)中的线性回归方程,分析张三同学7岁至13岁身高的变化情况,如17岁之前都符合这一变化,请预测张三同学15岁时的身高.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对某校高一年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:

分组

频数

频率

[10,15)

10

0.25

[15,20)

25

n

[20,25)

m

p

[25,30)

2

0.05

合计

M

1

(1)求出表中Mp及图中a的值;

(2)若该校高一学生有360人,试估计该校高一学生参加社区服务的次数在区间[15,20)内的人数;

(3)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,请列举出所有基本事件,并求至多1人参加社区服务次数在区间[20,25)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下三个关于圆锥曲线的命题中:

①设为两个定点,为非零常数,若,则动点的轨迹是双曲线;

②方程的两根可分别作为椭圆和双曲线的离心率;

③双曲线与椭圆有相同的焦点;

④已知抛物线,以过焦点的一条弦为直径作圆,则此圆与准线相切,其中真命题为__________.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交强险是车主必须为机动车购买的险种.若普通6座以下私家车投保交强险第一年的费用(基准保费)统一为a元,在下一年续保时,实行的是费率浮动机制,保费与上一年度车辆发生道路交通事故的情况相联系,发生交通事故的次数越多,费率也就越高,具体浮动情况如表:

交强险浮动因素和浮动费率比率表

浮动因素

浮动比率

A1

上一个年度未发生有责任道路交通事故

下浮10%

A2

上两个年度未发生有责任道路交通事故

下浮20%

A3

上三个及以上年度未发生有责任道路交通事故

下浮30%

A4

上一个年度发生一次有责任不涉及死亡的道路交通事故

0%

A5

上一个年度发生两次及两次以上有责任道路交通事故

上浮10%

A6

上一个年度发生有责任道路交通死亡事故

上浮30%

某机构为了研究某一品牌普通6座以下私家车的投保情况,随机抽取了60辆车龄已满三年的该品牌同型号私家车的下一年续保时的情况,统计得到了下面的表格:

类型

A1

A2

A3

A4

A5

A6

数量

10

5

5

20

15

5

以这60辆该品牌车的投保类型的频率代替一辆车投保类型的概率,完成下列问题:
(Ⅰ)按照我国《机动车交通事故责任强制保险条例》汽车交强险价格的规定a=950.记X为某同学家的一辆该品牌车在第四年续保时的费用,求X的分布列与数学期望值;(数学期望值保留到个位数字)
(Ⅱ)某二手车销售商专门销售这一品牌的二手车,且将下一年的交强险保费高于基本保费的车辆记为事故车.假设购进一辆事故车亏损5000元,一辆非事故车盈利10000元:
①若该销售商购进三辆(车龄已满三年)该品牌二手车,求这三辆车中至多有一辆事故车的概率;
②若该销售商一次购进100辆(车龄已满三年)该品牌二手车,求他获得利润的期望值.

查看答案和解析>>

同步练习册答案