【题目】已知函数,,其中.
(1)若是函数的极值点,求实数的值;
(2)若对任意的(为自然对数的底数)都有≥成立,求实数的取值范围.
【答案】(1)(2)
【解析】
试题本题主要考查利用导数求函数的极值、单调区间、最值等基础知识及分类讨论思想,也考查了学生分析问题解决问题的能力及计算能力.第一问先对函数进行求导,再把极值点代入导函数求得实数a的值;第二问对任意的x1,x2∈[1,e]都有f(x1)≥g(x2)成立等价于对任意的x1,x2∈[1,e],都有f(x)min≥g(x)max,利用导数分别判断函数f (x)、g(x)的单调性并求其在定义域范围内的最值,判断单调性时可对实数a进行分类讨论,则可求得实数a的取值范围.
试题解析:(1)∵h(x)=2x++ln x,其定义域为(0,+∞),∴h′(x)=2-+,
∵x=1是函数h(x)的极值点,∴h′(1)=0,即3-a2=0.
∵a>0,∴a=.
经检验当a=时,x=1是函数h(x)的极值点,∴a=.
(2)对任意的x1,x2∈[1,e]都有f(x1)≥g(x2)成立等价于对任意的x1,x2∈[1,e],都有f(x)min≥g(x)max.
当x∈[1,e]时,g′(x)=1+>0.
∴函数g(x)=x+ln x在[1,e]上是增函数,∴g(x)max=g(e)=e+1.
∵f′(x)=1-=,且x∈[1,e],a>0.
①当0<a<1且x∈[1,e]时,f′(x)=>0,
∴函数f(x)=x+在[1,e]上是增函数,∴f(x)min=f(1)=1+a2.
由1+a2≥e+1,得a≥,又0<a<1,∴a不合题意.
②当1≤a≤e时,
若1≤x≤a,则f′(x)=<0,
若a<x≤e,则f′(x)=>0.
∴函数f(x)=x+在[1,a)上是减函数,在(a,e]上是增函数.
∴f(x)min=f(a)=2a.
由2a≥e+1,得a≥. 又1≤a≤e,∴≤a≤e.
③当a>e且x∈[1,e]时f′(x)=<0,
函数f(x)=x+在[1,e]上是减函数.∴f(x)min=f(e)=e+.
由e+≥e+1,得a≥,又a>e,∴a>e.
综上所述,a的取值范围为[,+∞).
科目:高中数学 来源: 题型:
【题目】一个盒子中装有1个黑球和2个白球,这3个球除颜色外完全相同.有放回地连续抽取2次,每次从中任意地取出1个球.计算下列事件的概率:
(1)取出的两个球都是白球;
(2)第一次取出白球,第二取出黑球;
(3)取出的两个球中至少有一个白球.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出如图所示的三幅统计图及四个命题:
①从折线图能看出世界人口的变化情况;
②2050年非洲人口将达到大约15亿;
③2050年亚洲人口比其他各洲人口的总和还要多;
④从1957年到2050年各洲中北美洲人口增长速度最慢.
其中命题正确的有( )
A.①②B.①③C.①④D.②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某高校调查喜欢“统计”课程是否与性别有关,随机抽取了55个学生,得到统计数据如表:
喜欢 | 不喜欢 | 总计 | |
男生 | 20 | ||
女生 | 20 | ||
总计 | 30 | 55 |
(1)完成表格的数据;
(2)判断是否在犯错误的概率不超过0.005的前提下认为喜欢“统计”课程与性别有关?
参考公式:
0.025 | 0.01 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知是自然数1,2,…,的一个排列,且满足:对任意,均有.
(1)若记为数在排列中所处位置的序号(如排列中,,,,).求证:对每一个满足题意的排列,均有成立.
(2)试求满足题意的排列的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】电影公司随机收集了电影的有关数据,经分类整理得到下表:
电影类型 | 第一类 | 第二类 | 第三类 | 第四类 | 第五类 | 第六类 |
电影部数 | 140 | 50 | 300 | 200 | 800 | 510 |
好评率 | 0.4 | 0.2 | 0.15 | 0.25 | 0.2 | 0.1 |
好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.
(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;
(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;
(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,将四棱锥S-ABCD的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种色可供使用,则不同的染色方法种数为( )
A.240B.360C.420D.960
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】继共享单车之后,又一种新型的出行方式------“共享汽车”也开始亮相北上广深等十余大中城市,一款叫“一度用车”的共享汽车在广州提供的车型是“奇瑞eQ”,每次租车收费按行驶里程加用车时间,标准是“1元/公里+0.1元/分钟”,李先生家离上班地点10公里,每天租用共享汽车上下班,由于堵车因素,每次路上开车花费的时间是一个随机变量,根据一段时间统计40次路上开车花费时间在各时间段内的情况如下:
时间(分钟) | |||||
次数 | 8 | 14 | 8 | 8 | 2 |
以各时间段发生的频率视为概率,假设每次路上开车花费的时间视为用车时间,范围为分钟.
(Ⅰ)若李先生上.下班时租用一次共享汽车路上开车不超过45分钟,便是所有可选择的交通工具中的一次最优选择,设是4次使用共享汽车中最优选择的次数,求的分布列和期望.
(Ⅱ)若李先生每天上下班使用共享汽车2次,一个月(以20天计算)平均用车费用大约是多少(同一时段,用该区间的中点值作代表).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】手机支付也称为移动支付,是指允许移动用户使用其移动终端(通常是手机)对所消费的商品或服务进行账务支付的一种服务方式.继卡类支付、网络支付后,手机支付俨然成为新宠.某金融机构为了了解移动支付在大众中的熟知度,对15-65岁的人群随机抽样调查,调查的问题是“你会使用移动支付吗?”其中,回答“会”的共有100个人,把这100个人按照年龄分成5组,然后绘制成如图所示的频率分布表和频率分布直方图.
组数 | 第l组 | 第2组 | 第3组 | 第4组 | 第5组 |
分组 | |||||
频数 | 20 | 36 | 30 | 10 | 4 |
(1)求;
(2)从第l,3,4组中用分层抽样的方法抽取6人,求第l,3,4组抽取的人数:
(3)在(2)抽取的6人中再随机抽取2人,求所抽取的2人来自同一个组的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com