精英家教网 > 高中数学 > 题目详情

【题目】已知函数,其中

(1)是函数的极值点,求实数的值;

(2)若对任意的为自然对数的底数)都有成立,求实数的取值范围.

【答案】(1)(2)

【解析】

试题本题主要考查利用导数求函数的极值、单调区间、最值等基础知识及分类讨论思想,也考查了学生分析问题解决问题的能力及计算能力.第一问先对函数进行求导,再把极值点代入导函数求得实数a的值;第二问对任意的x1x2∈[1e]都有f(x1)≥g(x2)成立等价于对任意的x1x2∈[1e],都有f(x)min≥g(x)max利用导数分别判断函数f (x)g(x)的单调性并求其在定义域范围内的最值,判断单调性时可对实数a进行分类讨论,则可求得实数a的取值范围.

试题解析:(1)∵h(x)2xln x,其定义域为(0,+∞)∴h′(x)2

∵x1是函数h(x)的极值点,∴h′(1)0,即3a20.

∵a0∴a.

经检验当a时,x1是函数h(x)的极值点,∴a.

(2)对任意的x1x2∈[1e]都有f(x1)≥g(x2)成立等价于对任意的x1x2∈[1e],都有f(x)min≥g(x)max.

x∈[1e]时,g′(x)10.

函数g(x)xln x[1e]上是增函数,∴g(x)maxg(e)e1.

∵f′(x)1,且x∈[1e]a0.

0a1x∈[1e]时,f′(x)0

函数f(x)x[1e]上是增函数,∴f(x)minf(1)1a2.

1a2≥e1,得a≥,又0a1∴a不合题意.

1≤a≤e时,

1≤x≤a,则f′(x)0

ax≤e,则f′(x)0.

函数f(x)x[1a)上是减函数,在(ae]上是增函数.

∴f(x)minf(a)2a.

2a≥e1,得a≥. 1≤a≤e≤a≤e.

aex∈[1e]f′(x)0

函数f(x)x[1e]上是减函数.∴f(x)minf(e)e.

e≥e1,得a≥,又ae∴ae.

综上所述,a的取值范围为[,+∞)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一个盒子中装有1个黑球和2个白球,这3个球除颜色外完全相同.有放回地连续抽取2次,每次从中任意地取出1个球.计算下列事件的概率:

1)取出的两个球都是白球;

2)第一次取出白球,第二取出黑球;

3)取出的两个球中至少有一个白球.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出如图所示的三幅统计图及四个命题:

①从折线图能看出世界人口的变化情况;

2050年非洲人口将达到大约15亿;

2050年亚洲人口比其他各洲人口的总和还要多;

④从1957年到2050年各洲中北美洲人口增长速度最慢.

其中命题正确的有(

A.①②B.①③C.①④D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高校调查喜欢统计课程是否与性别有关,随机抽取了55个学生,得到统计数据如表:

喜欢

不喜欢

总计

男生

20

女生

20

总计

30

55

1)完成表格的数据;

2)判断是否在犯错误的概率不超过0.005的前提下认为喜欢统计课程与性别有关?

参考公式:

0.025

0.01

0.005

0.001

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是自然数1,2,…,的一个排列且满足对任意均有

(1)若记为数在排列中所处位置的序号如排列).求证对每一个满足题意的排列,均有成立.

(2)试求满足题意的排列的个数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】电影公司随机收集了电影的有关数据,经分类整理得到下表:

电影类型

第一类

第二类

第三类

第四类

第五类

第六类

电影部数

140

50

300

200

800

510

好评率

0.4

0.2

0.15

0.25

0.2

0.1

好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.

(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;

(Ⅱ)随机选取1部电影,估计这部电影没有获得好评的概率;

(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加0.1,哪类电影的好评率减少0.1,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,将四棱锥S-ABCD的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种色可供使用,则不同的染色方法种数为(

A.240B.360C.420D.960

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】继共享单车之后,又一种新型的出行方式------“共享汽车”也开始亮相北上广深等十余大中城市,一款叫“一度用车”的共享汽车在广州提供的车型是“奇瑞eQ”,每次租车收费按行驶里程加用车时间,标准是“1元/公里+0.1元/分钟”,李先生家离上班地点10公里,每天租用共享汽车上下班,由于堵车因素,每次路上开车花费的时间是一个随机变量,根据一段时间统计40次路上开车花费时间在各时间段内的情况如下:

时间(分钟)

次数

8

14

8

8

2

以各时间段发生的频率视为概率,假设每次路上开车花费的时间视为用车时间,范围为分钟.

(Ⅰ)若李先生上.下班时租用一次共享汽车路上开车不超过45分钟,便是所有可选择的交通工具中的一次最优选择,设是4次使用共享汽车中最优选择的次数,求的分布列和期望.

(Ⅱ)若李先生每天上下班使用共享汽车2次,一个月(以20天计算)平均用车费用大约是多少(同一时段,用该区间的中点值作代表).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】手机支付也称为移动支付,是指允许移动用户使用其移动终端(通常是手机)对所消费的商品或服务进行账务支付的一种服务方式.继卡类支付、网络支付后,手机支付俨然成为新宠.某金融机构为了了解移动支付在大众中的熟知度,对15-65岁的人群随机抽样调查,调查的问题是“你会使用移动支付吗?”其中,回答“会”的共有100个人,把这100个人按照年龄分成5组,然后绘制成如图所示的频率分布表和频率分布直方图.

组数

第l组

第2组

第3组

第4组

第5组

分组

频数

20

36

30

10

4

(1)求

(2)从第l,3,4组中用分层抽样的方法抽取6人,求第l,3,4组抽取的人数:

(3)在(2)抽取的6人中再随机抽取2人,求所抽取的2人来自同一个组的概率.

查看答案和解析>>

同步练习册答案