精英家教网 > 高中数学 > 题目详情
若函数f(x)同时满足下列三个条件:①有反函数 ②是奇函数 ③其定义域与值域相同,则函数f(x)可以是( )
A.f(x)=sinx(
B.f(x)=
C.f(x)=-x3
D.f(x)=ln
【答案】分析:先依据奇函数排除一选项,再根据定义域与值域是否相同,又排除一些选项,最后根据是否有反函数,即可得出答案.
解答:解:由于f(x)=是偶函数,
即B不是奇函数,
又A:f(x)=sinx()的定义域为,值域为[-1,1],
D:f(x)=ln的定义域为(-1,1),值域不是(-1,1),
故选项A、D定义域与值域不同,
对于C:同时满足下列三个条件:①有反函数 ②是奇函数 ③其定义域与值域相同,
故只有C正确.
故选C.
点评:本题主要考查了函数奇偶性的判断.设函数y=f(x)的定义域为D,如果对D内的任意一个x,都有x∈D,且f(-x)=-f(x),则这个函数叫做奇函数.灵活利用题目的条件解好数学问题是一种能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)同时满足①有反函数;②是奇函数;③定义域与值域相同.则f(x)的解析式可能是(  )
A、f(x)=-x3
B、f(x)=x3+1
C、f(x)=
ex+e-x
2
D、f(x)=lg
1-x
1+x

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)同时具有以下两个性质:①f(x)是偶函数;②对任意实数x,都有f(-x+
π
4
)=f(x+
π
4
),则下列函数中,符合上述条件的有
 
.(填序号)
①f(x)=cos4x;
②f(x)=sin(2x+
π
2
);
③f(x)=sin(4x+
π
2
);
④f(x)=cos(
2
-
4x).

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)同时满足下列三个性质:①偶函数;②在区间(0,1)上是增函数;③有最小值,则y=f(x)的解析式可以是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•卢湾区一模)若函数f(x)同时满足下列三个条件:①有反函数 ②是奇函数 ③其定义域与值域相同,则函数f(x)可以是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)同时满足以下两个条件:①f(x)在其定义域上是单调函数;②在f(x)的定义域内存在区间[a,b],使得f(x)在[a,b]上的值域是[a,b].则称函数f(x)为“自强”函数.
(1)判断函数f(x)=2x-1是否为“自强”函数?若是,则求出a,b若不是,说明理由;
(2)若函数f(x)=
2x-1
+t是“自强”函数,求实数t的取值范围.

查看答案和解析>>

同步练习册答案