精英家教网 > 高中数学 > 题目详情
已知F1F2是双曲线的两焦点,以线段F1F2为边作正三角形MF1F2,若边MF1的中点在双曲线上,则双曲线的离心率是  (   )
A.B.C.D.
设 M F双曲线的交点为P,焦点F(-c,0), F2(c,0),由平面几何知识知F2P⊥FM,又|F F2|="2c " 于是 |PF2|=2csin60°=c    |PF1|="c  "
故  2a= |PF2|-|PF1|=c-c  =(-1)c  e= =+1.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知A(-2,0),B(2,0),动点P与A、B两点连线的斜率分别为,且满足·="t" (t≠0且t≠-1).求动点P的轨迹C的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

AB为双曲线上的两个动点,满足。(Ⅰ)求证:为定值; (Ⅱ)动点P在线段AB上,满足,求证:点P在定圆上.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出如下四个命题:①方程表示的图形是圆;②椭圆椭圆的离心率;③抛物线的准线的方程是;④双曲线的渐近线方程是。其中所有不正确命题的序号是           

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)已知椭圆C的焦点在x轴上,它的一个顶点恰好是抛物线的焦点,离心率。(1)求椭圆的标准方程;(2)过椭圆C的右焦点作直线交椭圆C于A、B两点,交y轴于M,若为定值吗?证明你的结论。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知双曲线(b>0)的焦点,则b=()
A.3B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知点P(3,0),点A,B分别在x轴负半轴和y轴上,且 当点B在y轴上移动时记点C的轨迹为E.(Ⅰ)求曲线E的方程;(Ⅱ)已知向量为方向向量的直线l交曲线E于不同的两点M,N,若D(-1,0),的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为椭圆E的两个左右焦点,抛物线C以为顶点,为焦点,设P为椭圆与抛物线的一个交点,如果椭圆离心率e满足,则e的值为( )

M

 
A.             B.          C.          D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,P是抛物线C:x2=2y上一点,F为抛物线的焦点,直线l过点P且与抛物线交于另一点Q,已知P(x1,y1),Q(x2,y2).
(1)若l经过点F,求弦长|PQ|的最小值;
(2)设直线l:y=kx+b(k≠0,b≠0)与x轴交于点S,与y轴交于点T
①求证:
|ST|
|SP|
+
|ST|
|SQ|
=|b|(
1
y1
+
1
y2
)

②求
|ST|
|SP|
+
|ST|
|SQ|
的取值范围.

查看答案和解析>>

同步练习册答案