精英家教网 > 高中数学 > 题目详情
4.已知△ABC的内角A,B,C所对的边长分别为a,b,c,cosA=$\frac{12}{13}$,bc=182.
(1)求△ABC的面积;
(2)若c-b=1,求a的值.

分析 (1)由已知及同角三角函数关系式可求sinA的值,由三角形面积公式即可求值得解.
(2)由bc=182,c-b=1,可得c,b的值,利用余弦定理即可求得a的值.

解答 (本题满分为12分)
解:(1)由cosA=$\frac{12}{13}$,解得sinA=$\sqrt{1-(\frac{12}{13})^{2}}$=$\frac{5}{13}$…3分
∵bc=182,
∴△ABC的面积S=$\frac{1}{2}$bcsinA=35…6分
(2)由bc=182,c-b=1,可得c=14,b=13,
∴a2=b2+c2-abccosA=13${\;}^{2}+1{4}^{2}-2×13×14×\frac{12}{13}$=29…10分
∴a=$\sqrt{29}$…12分

点评 本题主要考查了同角三角函数基本关系式的应用,考查了三角形面积公式,余弦定理的应用,考查了计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.设$\overrightarrow{a},\overrightarrow{b}$是两个非零的平面向量,给出下列说法
①若$\overrightarrow{a}•\overrightarrow{b}$=0,则有$|\overrightarrow{a}+\overrightarrow{b|}=|\overrightarrow{a}-\overrightarrow{b}|$;②$|\overrightarrow{a}•\overrightarrow{b}|=|\overrightarrow{a}||\overrightarrow{b}|$;③若存在实数λ,使$\overrightarrow{a}=λ\overline{b}$,则$|\overrightarrow{a}+\overrightarrow{b}|=|\overrightarrow{a|}+|\overrightarrow{b}|$;④若$|\overrightarrow{a}+\overrightarrow{b}|=|\overrightarrow{a}|+|\overrightarrow{b|}$,则存在实数λ,使得$\overrightarrow{a}=λ\overrightarrow{b}$.其中说法正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知2x≤256,且log2x≥$\frac{1}{2}$.
(1)求x的取值范围;
(2)求函数f(x)=log2($\frac{x}{2}$)•log2($\frac{x}{4}$)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,A1,A2,A3,…An分别是抛物线y=x2上的点,A1B1垂直与x轴,A1C1垂直于y轴,线段B1C1交抛物线与A2,再作A2B2⊥x轴,A2C2⊥y轴,线段B2C2交抛物线于A3,这样下去,分别可以得到A4,A5,…,An,其中A1的坐标为(1,1),则S${\;}_{矩形{A}_{n}{B}_{n}O{C}_{n}}$=($\frac{\sqrt{5}-1}{2}$)3n-3..

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知a,b,c分别是△ABC的三个内角A,B,C所对的边,若△ABC的面积S=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{4}$,则角C的大小是(  )
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)如果两个角有相同的始边和终边,这两个角相等吗?为什么?
(2)钝角是第几象限的角?第二象限的角都是钝角吗?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.在正六棱柱ABCDEF-A1B1C1D1E1F1中,用$\overrightarrow{AB}$,$\overrightarrow{AF}$,$\overrightarrow{A{A}_{1}}$表示向量$\overrightarrow{A{D}_{1}}$,其结果为$\overrightarrow{A{D}_{1}}$=$\overrightarrow{A{A}_{1}}$+2($\overrightarrow{AB}$+$\overrightarrow{AF}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列说法:
①如果非零向量$\overrightarrow{a}$与$\overrightarrow{b}$的方向相同或相反,那么$\overrightarrow{a}$+$\overrightarrow{b}$的方向必与$\overrightarrow{a}$,$\overrightarrow{b}$之一的方向相同;
②△ABC中,必有$\overrightarrow{AB}$$+\overrightarrow{BC}$+$\overrightarrow{CA}$=$\overrightarrow{0}$;
③若$\overrightarrow{AB}$+$\overrightarrow{BC}$$+\overrightarrow{CA}$=$\overrightarrow{0}$,则A,B,C为一个三角形的三个顶点;
④若$\overrightarrow{a}$,$\overrightarrow{b}$均为非零向量,则|$\overrightarrow{a}$+$\overrightarrow{b}$|与|$\overrightarrow{a}$|+|$\overrightarrow{b}$|一定相等.
其中正确说法的个数为(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知f(x)是定义在R内的偶函数,且它在[0,+∞)内单调递增,那么使f(-2)≤f(a)成立的实数a的取值范围是a≤-2或a≥2.

查看答案和解析>>

同步练习册答案