精英家教网 > 高中数学 > 题目详情
13.已知f(x)=ax5+bx3+$\frac{c}{x}$-8,且f(2)=5,则f(-2)的值为(  )
A.-5B.21C.13D.-21

分析 由已知中f(x)的解析式,可得f(x)+f(-x)=-16,进而结合f(2)=5,可得f(-2)的值.

解答 解:∵f(x)=ax5+bx3+$\frac{c}{x}$-8,
∴f(-x)=-(ax5+bx3+$\frac{c}{x}$)-8,
∴f(x)+f(-x)=-16,
又∵f(2)=5,
∴f(-2)=-21,
故选:C

点评 本题考查的知识点是函数奇偶性的性质,熟练掌握函数奇偶性的定义和性质,是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=ln$\frac{ex}{e-x},若f(\frac{e}{2013})+f(\frac{2e}{2013})+…+f(\frac{2012e}{2013})=503(a+b),则{a^2}+{b^2}$的最小值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow{b}$=(m,2m-3),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则m的值为(  )
A.-$\frac{9}{7}$B.$\frac{9}{7}$C.3D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设函数f(x)在x=1处可导,则$\underset{lim}{△x→0}$$\frac{f(1+△x)-f(1)}{2△x}$等于$\frac{1}{2}$f′(1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知cos($\frac{π}{2}+α$)=2sin($α-\frac{π}{2}$),求$\frac{sin(3π+α)+cos(α+π)}{5cos(\frac{5π}{2}-α)+3sin(\frac{7π}{2}-α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数y=log2(ax2-4x+4)的定义域为R,则实数a的取值范围是(  )
A.(0,1]B.[0,1]C.[1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=loga$\frac{x-2}{x+2}(a>0$且a≠1).
(1)求f(x)的定义域;
(2)判定f(x)的奇偶性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知向量$\overrightarrow a=({cosα,sinα}),\overrightarrow b=({cosβ,sinβ})$,且向量$\overrightarrow a,\overrightarrow b$满足关系式:$|{k\overrightarrow a-\overrightarrow b}|=\sqrt{3}|{\overrightarrow a+k\overrightarrow b}|$,其中k>0.
(1)求证:$({\overrightarrow a+\overrightarrow b})⊥({\overrightarrow a-\overrightarrow b})$;
(2)试用k表示$\overrightarrow a•\overrightarrow b$,求$\overrightarrow a•\overrightarrow b$的最大值,并求此时向量$\overrightarrow a,\overrightarrow b$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an}中,a1=-16,3an=3an-1+2(n∈N*),若anan+2<0,则n=24.

查看答案和解析>>

同步练习册答案