精英家教网 > 高中数学 > 题目详情

【题目】已知曲线 的参数方程 ( 为参数),曲线 的极坐标方程为 .
(1)将曲线 的参数方程化为普通方程,将曲线 的极坐标方程化为直角坐标方程;
(2)试问曲线 是否相交?若相交,请求出公共弦的长;若不相交,请说明理由.

【答案】
(1)解:由 为参数)得

曲线 的普通方程为 .

,∴ .

∴有 为所求曲线 的直角坐标方程


(2)解:∵圆 的圆心坐标 ,圆 的圆心坐标为

,所以两圆相交.

设相交弦长为 ,因为两圆半径相等,所以公共弦平分线段

.

即所求公共弦的长为


【解析】(1)根据同角三角函数的关系式消去参数θ ,即可求出曲线C1的普通方程再把曲线C2的极坐标方程两边同乘以,借助极坐标公式进行化简即可求出直角坐标的方程。(2)先求出两个圆心之间的距离与两半径和进行比较,设出相交弦长为d,因为两圆半径相等所以公共弦分线段C1C2,建立等量关系求出即可。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了调查某厂工人生产某种产品的能力,随机抽查了20位工人某天生产该产品的数量.产品数量的分组区间为[45,55),[55,65),[65,75),[75,85),[85,95)由此得到频率分布直方图如图.则产品数量位于[55,65)范围内的频率为;这20名工人中一天生产该产品数量在[55,75)的人数是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018海南高三阶段性测试(二模)如图,在直三棱柱中, ,点的中点,点上一动点.

I)是否存在一点,使得线段平面?若存在,指出点的位置,若不存在,请说明理由.

II)若点的中点且,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某加油站20名员工日销售量的频率分布直方图,如图所示:

1)补全该频率分布直方图在[2030)的部分,并分别计算日销售量在 [1020),[2030)的员工数;

2)在日销量为[1030)的员工中随机抽取2人,求这两名员工日销量在 [2030)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个盒子中装有5张编号依次为1、2、3、4、5的卡片,这5 张卡片除号码外完全相同.现进行有放回的连续抽取2 次,每次任意地取出一张卡片.

(1)求出所有可能结果数,并列出所有可能结果;

(2)求事件“取出卡片号码之和不小于7 或小于5”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,圆C的方程为x2y28x150,若直线ykx2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C有公共点,则k的最大值是____________

【答案】

【解析】C的方程可化为(x4)2y21C的圆心为(40),半径为1.由题意知,直线ykx2上至少存在一点A(x0kx02),以该点为圆心,1为半径的圆与圆C有公共点,存在x0∈R,使得AC≤11成立,即ACmin≤2.

ACmin即为点C到直线ykx2的距离

≤2,解得0≤k≤.k的最大值是.

型】填空
束】
15

【题目】在平面直角坐标系中,直线

(1)若直线与直线平行,求实数的值;

(2)若 ,点在直线上,已知的中点在轴上,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校举办校园科技文化艺术节,在同一时间安排《生活趣味数学》和《校园舞蹈赏析》两场讲座.已知A、B两学习小组各有5位同学,每位同学在两场讲座任意选听一场.若A组1人选听《生活趣味数学》,其余4人选听《校园舞蹈赏析》;B组2人选听《生活趣味数学》,其余3人选听《校园舞蹈赏析》.
(1)若从此10人中任意选出3人,求选出的3人中恰有2人选听《校园舞蹈赏析》的概率;
(2)若从A、B两组中各任选2人,设X为选出的4人中选听《生活趣味数学》的人数,求X的分布列和数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数
(I)求函数 在点 处的切线方程;
(II)求函数 的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的多面体中, 菱形, 是矩形, ⊥平面 .

(Ⅰ)异面直线 所成的角余弦值;
(Ⅱ)求证平面 ⊥平面
(Ⅲ)在线段 取一点 ,当二面角 的大小为60°时,求 .

查看答案和解析>>

同步练习册答案