精英家教网 > 高中数学 > 题目详情

【题目】为了解某班学生喜好体育运动是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:

喜好体育运动

不喜好体育运动

合计

男生

5

女生

10

合计

50

已知按喜好体育运动与否,采用分层抽样法抽取容量为10的样本,则抽到喜好体育运动的人数为6.

(1)请将上面的列联表补充完整;

(2)能否在犯错概率不超过0.01的前提下认为喜好体育运动与性别有关?说明理由.

附:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

【答案】(1)见解析; (2)在犯错误率不超过0.01的前提下认为喜好体育运动与性别有关.

【解析】

(1)根据分层抽样比计算出全班喜欢体育运动的人数和不喜欢体育运动的人数,可将列联表补充完整;
(2)根据公式计算K2,对照临界值表作结论.

(1)设喜好体育运动人数为,则 .

所以

列联表补充如下:

喜好体育运动

不喜好体育运动

合计

男生

20

5

25

女生

10

15

25

合计

30

20

50

(2)因为

所以可以在犯错误率不超过0.01的前提下认为喜好体育运动与性别有关.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率,且椭圆的短轴长为2.

(1)球椭圆的标准方程;

(2)已知直线过右焦点,且它们的斜率乘积为,设分别与椭圆交于点.

①求的值;

②设的中点的中点为,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是( )

A. 某厂一批产品的次品率为 ,则任意抽取其中10件产品一定会发现一件次品

B. 掷一枚硬币,连续出现5次正面向上,第六次出现反面向上的概率与正面向上的概率仍然都为0.5

C. 某医院治疗一种疾病的治愈率为10%,那么前9个病人都没有治愈,第10个人就一定能治愈

D. 气象部门预报明天下雨的概率是90%,说明明天该地区90%的地方要下雨,其余10%的地方不会下雨

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,过抛物线)上一点,作两条直线分别交抛物线于点,若的斜率满足.

(1)证明:直线的斜率为定值,并求出该定值;

(2)若直线轴上的截距,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为椭圆上一点,分别为关于轴,原点,轴的对称点,

1)求四边形面积的最大值;

2)当四边形最大时,在线段上任取一点,若过的直线与椭圆相交于两点,且中点恰为,求直线斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题:

①若ABCD是空间任意四点,则有

共线的充要条件;

③对空间任意一点P与不共线的三点ABC,若,(yzR),则PABC四点共面.

其中不正确命题的个数是(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线C1的渐近线是x±2y=0,焦点坐标是F1-0)、F20).

1)求双曲线C1的方程;

2)若椭圆C2与双曲线C1有公共的焦点,且它们的离心率之和为,点P在椭圆C2上,且|PF1|=4,求∠F1PF2的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校100名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间是:[50,60)[60,70)[70,80)[80,90)[90,100]

(1)求图中a的值;

(2)根据频率分布直方图,估计这100名学生语文成绩的平均分;

(3)若这100名学生语文成绩某些分数段的人数(x)与数学成绩相应分数段的人数(y)之比如下表所示,求数学成绩在[50,90)之外的人数.

分数段

[50,60)

[60,70)

[70,80)

[80,90)

xy

11

21

34

45

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数),.

(1)若曲线在它们的交点处有相同的切线,求实数的值;

(2)当时,若函数在区间内恰有两个零点,求实数a的取值范围;

(3)当时,求函数在区间上的最小值.

[选修4-4:坐标系与参数方程]

查看答案和解析>>

同步练习册答案