堵车时间(小时) | 频数 |
[0,1] | 8 |
(1,2] | 6 |
(2,3] | 38 |
(3,4] | 24 |
(4,5] | 24 |
路段 | CD | EF | GH |
堵车概率 | x | y | $\frac{1}{4}$ |
平均堵车时间(小时) | a | 2 | 1 |
分析 (1)由已知数据能画出CD段堵车时间频率分布直方图,用总的堵车时间除以总人数100人,即得到平均堵车时间;
(2)利用走甲、乙路线所花汽油费的期望值相等,可得550+4y=500(1-x)+(500+60)x,即6x-4y-5=0,即可得出结论.
解答 解:(1)由CD段平均堵车时间,调查了100名走甲线路的司机,得到数据统计表,
作出CD段堵车时间频率分布直方图,如右图.
a=0.5×$\frac{8}{100}$+1.5×$\frac{6}{100}$+2.5×$\frac{38}{100}$+3.5×$\frac{24}{100}$+4.5$\frac{24}{100}$=3.
(2)在EF路段多花汽油费的数学期望是20×2y=40y元,在GH路段多花汽油费的数学期望是20×1×$\frac{1}{4}$=5元,
∵EF,GH路段堵车与否相互独立,
∴走乙路线多花汽油费的数学期望是40y+5元,
∴走乙路线花汽油费的数学期望是40y+550元,
∵走甲、乙路线所花汽油费的期望值相等,
∴550+4y=500(1-x)+(500+60)x,即6x-4y-5=0,
∵x=$\frac{11}{12}$,
∴y=$\frac{1}{8}$
点评 本题考查概率的计算,考查面积的计算,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | $\sqrt{10}$ | C. | $\sqrt{2}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com