精英家教网 > 高中数学 > 题目详情
1.一个几何体的三视图如图所示,若该几何体的体积为$\frac{10}{3}$,则a+b2的最小值为4

分析 由已知的三视图可得几何体的直观图,进而根据该几何体的体积为$\frac{10}{3}$,结合基本不等式可得a+b2的最小值.

解答 解:由已知的三视图可得该几何体的直观图如下所示:

它是由三棱柱ABC-DEF切去一个三棱锥F-ADG所得的组合体,
故体积V=$\frac{1}{2}$×2ab×b-$\frac{1}{3}$×$\frac{1}{2}$(2a-a)b×b=$\frac{5}{6}{ab}^{2}$=$\frac{10}{3}$,
∴ab2=4,
∴a+b2≥2$\sqrt{{ab}^{2}}$=4,
故a+b2的最小值为4,
故答案为:4

点评 本题考查的知识点是由三视图求体积和表面积,解决本题的关键是得到该几何体的形状.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.微信是腾讯公司推出的一种手机通讯软件,它支持发送语音短信、视频、图片和文字,一经推出便风靡全国,甚至涌现出一批在微信的朋友圈内销售商品的人(被称为微商).为了调查每天微信用户使用微信的时间情况,某经销化妆品的微商在一广场随机采访男性、女性微信用户各50名.其中每天玩微信时间超过6小时的用户列为“微信控”,否则称其为“非微信控”,调查结果如表:
 微信控非微信控合计
男性262450
女性302050
合计5644100
(1)根据以上数据,能否有60%的把握认为“微信控”与“性别”有关?
(2)现从参与调查的女性用户中按分层抽样的方法选出5人赠送营养面膜1份,求所抽取的5人中“微信控”和“非微信控”的人数;
(3)从(2)中抽选取的5人中再随机抽取3人赠送价值200元的护肤品套装,记这3人中“微信控”的人数为X,试求X的分布列及数学期望.
参考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
P(K2≥k00.500.400.250.050.0250.010
k00.4550.7081.3233.8415.0246.635

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知集合M={x|-1≤x<2},N={x|x≤α}.
(1)若M∪N=N,求a的取值范围;
(2)若M∩N≠∅,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0≤φ<2π)的部分图象如图所示
(1)写出函数f(x)的最小正周期及解析式(不要求解题过程)
(2)将函数f(x)的图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y=g(x)的图象.求函数g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求函数y=$\frac{2x}{3x+1}$的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π),x∈R的最大值是1,且函数最大值与最小值间对应的横坐标最小距离为π,其图象经过点M($\frac{π}{3}$,$\frac{1}{2}$).
(Ⅰ)求f(x)的解析式;
(Ⅱ)设f(α)=$\frac{2\sqrt{5}}{5}$,f(β+$\frac{π}{2}$)=-$\frac{\sqrt{10}}{10}$,α∈(0,$\frac{π}{2}$),β∈(0,$\frac{π}{2}$),求sinα,cosβ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.写出n从1到10的二项式系数表.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.把一根长为30cm的铁丝剪成两段,分别作钝角△ABC的两边AB和AC,并使∠BAC=120°,要使△ABC的周长最小,则AB和AC的长分别为15cm与15cm.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知在△ABC中,已知b=6,c=6$\sqrt{2}$,B=30°,则解三角形的结果有(  )
A.无解B.一解C.两解D.一解或两解

查看答案和解析>>

同步练习册答案