精英家教网 > 高中数学 > 题目详情
18.当a>1时.函数y=af(x)与y=f(x)具有相同的的单调性;当0<a<1时.函数y=af(x)与y=f(x)具有相反的的单调性.

分析 由条件利用复合函数的单调性,指数函数的单调性,得出结论.

解答 解:当a>1时,y=at 是增函数,若t=f(x)是增函数,则函数y=at=af(x)是增函数,
故y=at 与t=f(x)具有相同的单调性.
当0<a<1时,y=at 是减函数,若t=f(x)是增函数,则函数y=at=af(x)是减函数,
函数y=at 与t=f(x)具有相反的单调性,
故答案为:相同的;相反的.

点评 本题主要考查指数函数的单调性,复合函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知圆C:(x-2)2+(y+m-4)2=1,当m变化时,圆C上的点与原点的最短距离是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知正四棱台上底面边长为4cm,下底面边长为10cm,侧棱为5cm,求它的斜高和体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列说法错误的有(  )个
(1)棱柱的所有侧棱平行且相等;
(2)直棱柱的侧面是矩形;
(3){平行六面体}⊆{正四棱柱}⊆{长方体}⊆{正方体};
(4)正棱锥的顶点在底面上射影是底面中心;
(5)圆锥的轴截面是等腰三角形;
(6)球的小圆的半径等于球半径.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若M、A、B三点不共线,且存在实数λ1,λ2,使$\overrightarrow{MC}$=λ1$\overrightarrow{MA}$+λ2$\overrightarrow{MB}$,求证:A、B、C三点共线的充要条件是λ12=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知非零向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}+\overrightarrow{b}$|=|$\overrightarrow{a}-\overrightarrow{b}$|=$\frac{2\sqrt{3}}{3}$|$\overrightarrow{a}$|,则$\overrightarrow{a}+\overrightarrow{b}$与$\overrightarrow{a}$的夹角为$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如果关于x的方程$\sqrt{4-{x}^{2}}$=kx+1有两个不同的实根,则实数k的取值范围是[-$\frac{1}{2}$,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.5(x-3)2<2的解集是{x|$3-\frac{\sqrt{10}}{5}$<x<3+$\frac{\sqrt{10}}{5}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若θ∈($\frac{3π}{4}$,π),则下列各式错误的是④,并注明原因.
①sinθ+cosθ<0;
②sinθ-cosθ>0; 
③|sinθ|<|cosθ|; 
④sinθ+cosθ>0.

查看答案和解析>>

同步练习册答案