分析 作出不等式组对应的平面区域,利用目标函数的几何意义,求最大值.
解答 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=2x+y得y=-2x+z,
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点A时,直线y=-2x+z的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{x=3}\\{x-y+3=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=6}\end{array}\right.$,即A(3,6),
代入目标函数z=2x+y得z=2×3+6=6+6=12.
即目标函数z=2x+y的最大值为12.
故答案为:12.
点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
科目:高中数学 来源: 题型:选择题
A. | 2$\sqrt{3}$ | B. | $\sqrt{3}$ | C. | 2$\sqrt{5}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | f(2014)>f(2015)>f(2016) | B. | f(2016)>f(2014)>f(2015) | ||
C. | f(2016)=f(2014)>f(2015) | D. | f(2014)>f(2015)=f(2016) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{12}$=1 | B. | $\frac{{y}^{2}}{3}$-$\frac{{x}^{2}}{12}$=1 | C. | $\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{3}$=1 | D. | $\frac{{y}^{2}}{12}$-$\frac{{x}^{2}}{3}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,-e+$\frac{3}{2}$] | B. | [-e+$\frac{3}{2}$,e] | C. | [-e,e] | D. | [e,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-5,1) | B. | (-1,5) | C. | (-7,2) | D. | (2,-7) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com