【题目】盒中有6个小球,3个白球,记为个红球, 记为个黑球, 记为,除了颜色和编号外,球没有任何区别.
(1) 求从盒中取一球是红球的概率;
(2)从盒中取一球,记下颜色后放回,再取一球,记下颜色,若取白球得1分,取红球得2分,取黑球得3分,求两次取球得分之和为5分的概率
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,直线的极坐标方程为.
(1)求曲线的普通方程及直线的直角坐标方程;
(2)求曲线上的点到直线的距离的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区高考实行新方案,规定:语文、数学和英语是学生的必考科目,学生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目.若一个学生从六个科目中选出了三个科目作为选考科目,则称该学生确定选考方案,否则称该学生待确定选考方案.例如学生甲选择“物理、化学和生物”三个选考科目,则称学生甲确定选考方案.某校为了解高一年级名学生选考科目的意向,随机选取名学生进行了一次调查,统计情况如下表:
性别 | 选考方案确定情况 | 物理 | 化学 | 生物 | 历史 | 地理 | 政治 |
男 生 | 选考方案确定的有人 | ||||||
选考方案待确定的有人 | |||||||
女 生 | 选考方案确定的有人 | ||||||
选考方案待确定的有人 |
(1)估计该校高一年级已确定选考方案的学生有多少人?
(2)假设男生、女生选择选考科目是相互独立的.从确定选考方案的名男生中随机选出名,从确定选考方案的名女生中随机选出名,试求该男生和该女生的选考方案中都含有历史科目的概率;
(3)从确定选考方案的8名男生中随机选出2名,设随机变量表示名男生选考方案相同,表示名男生选考方案不同,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校高一200名学生的期中考试语文成绩服从正态分布,数学成绩的频数分布直方图如下:
(I)计算这次考试的数学平均分,并比较语文和数学哪科的平均分较高(假设数学成绩在频率分布直方图中各段是均匀分布的);
(II)如果成绩大于85分的学生为优秀,这200名学生中本次考试语文、数学优秀的人数大约各多少人?
(III)如果语文和数学两科都优秀的共有4人,从(II)中的这些同学中随机抽取3人,设三人中两科都优秀的有人,求的分布列和数学期望.
(附参考公式)若,则,
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有限数列,若满足,是项数,则称满足性质.
(1)判断数列和是否具有性质,请说明理由.
(2)若,公比为的等比数列,项数为10,具有性质,求的取值范围.
(3)若是的一个排列都具有性质,求所有满足条件的.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区高考实行新方案,规定:语文、数学和英语是学生的必考科目,学生还须从物理、化学、生物、历史、地理和政治六个科目中选取三个科目作为选考科目.若一个学生从六个科目中选出了三个科目作为选考科目,则称该学生确定选考方案,否则称该学生待确定选考方案.例如学生甲选择“物理、化学和生物”三个选考科目,则称学生甲确定选考方案.某校为了解高一年级450名学生选考科目的意向,随机选取30名学生进行了一次调查,统计情况如下表:
性别 | 选考方案确定情况 | 物理 | 化学 | 生物 | 历史 | 地理 | 政治 |
男生 | 有6人确定选考方案 | 0 | 1 | 2 | 6 | 6 | 3 |
有8人待确定选考方案 | 5 | 3 | 1 | 1 | 0 | 0 | |
女生 | 有10人确定选考方案 | 3 | 2 | 1 | 8 | 10 | 6 |
有6人待确定选考方案 | 5 | 4 | 1 | 0 | 0 | 1 |
(1)估计该校高一年级已确定选考方案的学生有多少人?
(2)写出确定选考方案的6名男生中选择“历史、地理和生物”的人数.(直接写出结果)
(3)从确定选考方案的6名男生中任选2名,试求出这2名学生选考科目完全相同的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com