精英家教网 > 高中数学 > 题目详情
1.函数f(x)=x-1-2sinπx的所有零点之和等于5.

分析 由f(x)=x-1-2sinπx=0得x-1=2sinπx,分别作出函数y=x-1和y=2sinπx的图象,利用对称性结合数形结合进行求解即可.

解答 解:由f(x)=x-1-2sinπx=0得x-1=2sinπx,
分别作出函数y=x-1和y=2sinπx的图象如图:
则两个函数都关于点(1,0)对称,
由图象知,两个函数共有5个交点,其中x=1是一个零点,
另外4个零点关于点(1,0)对称,
设对称的两个点的横坐标分别为x1,x2
则x1+x2=2×1=2,
∴5个交点的横坐标之和为2+2+1=5.
故答案为:5.

点评 本题主要考查函数交点个数以及数值的计算,根据函数图象的性质,利用数形结合是解决此类问题的关键,综合性较强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.在直角坐标系xoy中,曲线C1,C2的参数方程分别为$\left\{\begin{array}{l}x=\sqrt{5}cosθ\\ y=\sqrt{5}sinθ\end{array}\right.$(θ为参数)和$\left\{\begin{array}{l}x=\sqrt{5}-\frac{{\sqrt{2}}}{2}t\\ y=-\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数)则曲线C1,C2的交点的极坐标(5,$\frac{3π}{2}$)或(5,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知数列{an}中a1=1,关于x的方程x2-an+1•tan(cosx)+(2an+1)•tan1=0有唯一解,设bn=nan,数列{bn}的前n项和为Sn,则S9=(  )
A.8143B.8152C.8146D.8149

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ex-ax一1(a∈R).
(I)讨论函数y=f(x)的单调性并求其单调区间;
(Ⅱ)若函数F(x)=f(x)-x1nx在定义域内存在零点,试求实数a的取值范围;
(Ⅲ)若g(x)=1n(ex-1)-lnx,且f[g(x)]<f(x)在x∈(0,+∞)上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数h(x)=x2-mx,g(x)=lnx.
(Ⅰ)设f(t)=m${∫}_{\frac{π}{2}}^{t}$(sinx+cosx)dx且f(2016π)=2,若函数h(x)与g(x)在x=x0处的切线平行,求这两切线间的距离;
(Ⅱ)任意x>0,不等式h(x)≥g(x)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设函数f(x)=sin(ωx+φ)+cos(ωx+φ)(|φ|<$\frac{π}{2}$)的图象可以由g(x)=2$\sqrt{2}$sinxcosx的图象向x轴负方向平移$\frac{π}{4}$个单位得到,则φ的值为(  )
A.-$\frac{π}{8}$B.0C.$\frac{π}{8}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知点A(4,3),P是双曲线x2-y2=2右支上一点,F为双曲线的右焦点,则|PA|+|PF|的最小值是(  )
A.$2\sqrt{5}-3$B.$3\sqrt{5}-2\sqrt{2}$C.$3\sqrt{2}+2$D.$2\sqrt{5}+\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.股票每天的涨、跌幅均不超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一支股票某天涨停,之后两天时间又跌回到原价,若这两天此股票股价的平均每天下跌的百分率为x,则x满足的方程是(  )
A.1-2x=$\frac{9}{10}$B.1-2x=$\frac{10}{11}$C.(1-x)2=$\frac{9}{10}$D.(1-x)2=$\frac{10}{11}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=(mx+1)(1nx-3).
(1)若m=1,求曲线y=f(x)在x=1处的切线方程;
(2)若函数f(x)在(0,+∞)上是增函数,求实数m的取值范围.

查看答案和解析>>

同步练习册答案