精英家教网 > 高中数学 > 题目详情

【题目】已知f(x)是定义域为(0,+∞)的单调函数,若对任意的x∈(0,+∞),都有 ,且方程|f(x)﹣3|=x3﹣6x2+9x﹣4+a在区间(0,3]上有两解,则实数a的取值范围是(
A.0<a≤5
B.a<5
C.0<a<5
D.a≥5

【答案】A
【解析】解:∵定义域为(0,+∞)的单调函数f(x) 满足f[f(x)+ x]=4,
∴必存在唯一的正实数a,
满足f(x)+ x=a,f(a)=4,①
∴f(a)+ a=a,②
由①②得:4+ a=a, a=a﹣4,
a=( a4 , 左增,右减,有唯一解a=3,
故f(x)+ x=a=3,
f(x)=3﹣ x,
由方程|f(x)﹣3|=x3﹣6x2+9x﹣4+a在区间(0,3]上有两解,
即有| x|=x3﹣6x2+9x﹣4+a,
由g(x)=x3﹣6x2+9x﹣4+a,g′(x)=3x2﹣12x+9=3(x﹣1)(x﹣3),
当1<x<3时,g′(x)<0,g(x)递减;当0<x<1时,g′(x)<0,g(x)递增.
g(x)在x=1处取得最大值a,g(0)=a﹣4,g(3)=a﹣4,
分别作出y=| x|,和y=x3﹣6x2+9x﹣4的图象,可得
两图象只有一个交点,将y=x3﹣6x2+9x﹣4的图象向上平移,
至经过点(3,1),有两个交点,
由g(3)=1即a﹣4=1,解得a=5,
当0<a≤5时,两图象有两个交点,
即方程|f(x)﹣3|=x3﹣6x2+9x﹣4+a在区间(0,3]上有两解.
故选:A.

由题设知必存在唯一的正实数a,满足f(x)+ x=a,f(a)=4,f(a)+ a=a,故4+ a=a, a=a﹣4,a=( a4 , 左增,右减,有唯一解a=3,故f(x)+ x=a=3,由题意可得| x|=x3﹣6x2+9x﹣4+a在区间(0,3]上有两解,讨论g(x)=x3﹣6x2+9x﹣4+a的单调性和最值,分别画出作出y=| x|,和y=x3﹣6x2+9x﹣4的图象,通过平移即可得到a的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】假设某士兵远程射击一个易爆目标,射击一次击中目标的概率为,三次射中目标或连续两次射中目标该目标爆炸停止射击否则就一直独立地射击至子弹用完现有5发子弹,设耗用子弹数为随机变量X.

(1)若该士兵射击两次,求至少射中一次目标的概率;

(2)求随机变量X的概率分布与数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(0<φ<π)

(1)当φ时,在给定的坐标系内,用“五点法”做出函数f(x)在一个周期内的图象;

(2)若函数f(x)为偶函数,求φ的值;

(3)在(2)的条件下,求函数在[﹣π,π]上的单调递减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆.

(1)若直线过定点,且与圆相切,求的方程;

(2)若圆的半径为,圆心在直线上,且与圆外切,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆.

(1)若直线过定点,且与圆相切,求的方程;

(2)若圆的半径为,圆心在直线上,且与圆外切,求圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知公比不为1的等比数列{an}的前5项积为243,且2a3为3a2和a4的等差中项.
(1)求数列{an}的通项公式an
(2)若数列{bn}满足bn=bn1log3an+2(n≥2且n∈N*),且b1=1,求数列 的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某险种的基本保费为(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:

上年度出险次数

0

1

2

3

4

保费

设该险种一续保人一年内出险次数与相应概率如下:

一年内出险次数

0

1

2

3

4

概率

0.30

0.15

0.20

0.20

0.10

0.05

(1)求一续保人本年度的保费高于基本保费的概率;

(2)已知一续保人本年度的保费高于基本保费,求其保费比基本保费高出的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校200名学生的数学期中考试成绩频率分布直方图如图所示,其中成绩分组区间是.

1)求图中的值;

2)根据频率分布直方图,估计这200名学生的平均分;

3)若这200名学生的数学成绩中,某些分数段的人数与英语成绩相应分数段的人数之比如下表所示,求英语成绩在的人数.

分数段

1:2

2:1

6:5

1:2

1:1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的首项为1,且,数列满足,对任意,都有.

(1)求数列的通项公式;

(2)令,数列的前项和为.若对任意的,不等式恒成立,试求实数的取值范围.

查看答案和解析>>

同步练习册答案