精英家教网 > 高中数学 > 题目详情

设函数,若数列是单调递减数列,则实数的取值范围为(   )

A.    B.     C.   D.

 

【答案】

C

【解析】

试题分析:依题意,,所以,.若数列是单调递减数列,则,且.由,即则实数的取值范围为.

考点:数列、单调性

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数y=f(x)的定义域为(0,+∞),且对任意的正实数x,y,均有f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且当x>1时,f(x)>0.
(1)求f(
1
2
)
的值,试判断y=f(x)在(0,+∞)上的单调性,并加以证明;
(2)一个各项均为正数的数列{an},它的前n项和是Sn,若a1=3,且f(Sn)=f(an)+f(an+1)-1(n≥2,n∈N*),求数列{an}的通项公式;
(3)在(2)的条件下,是否存在实数M,使2na1a2an≥M•
2n+3
•(2a1-1)•(2a2-1)…(2an-1)
对于一切正整数n均成立?若存在,求出M的范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数y=f(x)的定义域为(0,+∞),且对任意的正实数x,y,均有f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且当x>1时,f(x)>0.
(1)求f(
12
)
的值,试判断y=f(x)在(0,+∞)上的单调性,并加以证明;
(2)一个各项均为正数的数列{an},它的前n项和是Sn,若a1=3,且对任意的正整数n,均满足f(Sn)=f(an)+f(an+1)-1,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源:2006学年浙江省余杭中学一摸备考(四)(理科数学) 题型:044

设函数

(1)若f(x)是R上的单调函数,求a的取值范围并指出单调性;

(2)若函数y=lgf(x)的定义域为R,求出a的取值范围;

(3)若数列是递增数列,求出a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

.设函数y=f(x)的定义域为(0,+∞),且对任意的正实数x, y,均有

f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且当x>1时,f(x)>0。

   (1)求f(1), f()的值;

   (2)试判断y=f(x)在(0,+∞)上的单调性,并加以证明;

   (3)一个各项均为正数的数列{a??n}满足f(Sn)=f(an)+f(an+1)-1,n∈N*,其中Sn是数列{an}的前n项和,求数列{an}的通项公式;

   (4)在(3)的条件下,是否存在正数M,使2n·a1·a2…an≥M·.(2a1-1)·(2a2-1)…(2an-1)对于一切n∈N*均成立?若存在,求出M的范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数y=f(x)的定义域为(0,+∞),且对任意的正实数x,y,均有f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且当x>1时,f(x)>0.
(1)求数学公式的值,试判断y=f(x)在(0,+∞)上的单调性,并加以证明;
(2)一个各项均为正数的数列{an},它的前n项和是Sn,若a1=3,且对任意的正整数n,均满足f(Sn)=f(an)+f(an+1)-1,求数列{an}的通项公式.

查看答案和解析>>

同步练习册答案