精英家教网 > 高中数学 > 题目详情
已知函数f(n)=log(n+1)(n+2)(n∈N*),若存在正整数k满足:f(1)•f(2)•f(3)•…•f(n)=k,那么我们把k叫做关于n的“对整数”,则当n∈[1,10]时,“对整数”共有(  )
A.1个B.2个C.4个D.8个
由题意,根据换底公式得,f(x)=log(x+1) (x+2)=
lg(x+2)
lg(x+1)

所以k=f(1)f(2)f(3)…f(x)=
lg3
lg2
lg4
lg3
lg5
lg4
lg(x+2)
lg(x+1)
=
lg(x+2)
lg2
=log2(x+2).
∵1≤x≤10,∴log23≤log2(x+2)≤log212
整数有log24,log28,即2,3,两个整数.
故选:B.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知,试证明至少有一个不小于1.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若实数x、y、m满足|x-m|>|y-m|,则称x比y远离m.
(1)若x2-1比1远离0,求x的取值范围;
(2)对任意两个不相等的正数a、b,证明:a3+b3比a2b+ab2远离2ab.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,已知命题:若矩形ABCD的对角线BD与边AB和BC所成角分别为α,β,则cos2α+cos2β=1,若把它推广到长方体ABCD-A1B1C1D1中,试写出相应命题形式:______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

5男6女共11个小孩做如下游戏:先让4个小孩(不全是男孩)等距离站在一个圆周的4个位置上,如果相邻两个小孩同为男孩或同为女孩,则在他(她)们中间站进一个男孩,否则站进一个女孩,然后让原来的4个小孩暂时退出,即算一次活动.这种活动按上述规则继续进行,直至圆周上所站的4个小孩都是男孩为止.这样的活动最多可以进行(  )
A.2次B.3次C.4次D.5次

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在Rt△ABC中,CA⊥CB,斜边AB上的高为h1,则
1
h21
=
1
CA2
+
1
CB2
;类比此性质,如图,在四面体P-ABC中,若PA,PB,PC两两垂直,底面ABC上的高为h,则得到的正确结论为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

我们常用定义解决与圆锥曲线有关的问题.如“设椭圆
x2
a2
+
y2
b2
=1(a>0,b>0)
的左、右焦点分别为F1,F2,过左焦点F1作倾斜角为θ的弦AB,设|F1A|=r1,|F1B|=r2,试证
1
r1
+
1
r2
为定值”.
证明如下:不妨设A在x轴的上方,在△ABC中,由椭圆的定义及余弦定理得,(2a-r12=r12+4c2-4cr1cosθ,∴r1=
b2
a-ccosθ

同理r2=
b2
a-ccos(π-θ)
=
b2
a+ccosθ
,于是
1
r
1
+
1
r
2
=
2a
b2
.请用类似的方法探索:设双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的左、右焦点分别为F1,F2,过左焦点F1作倾斜角为θ的直线与双曲线右支交于点A,左支交于点B,设|F1A|=r1,|F1B|=r2,是否有类似的结论成立,请写出与定值有关的结论是______..

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

因为对数函数y=logax是减函数(大前提),而y=log2x是对数函数(小前提),所以y=log2x是减函数(结论)”.上面推理是(  )
A.大前提错,导致结论错
B.小前提错,导致结论错
C.推理形式错,导致结论错
D.大前提和小前提都错,导致结论错

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

的最小值是(   )
A.B.C.-3D.

查看答案和解析>>

同步练习册答案