精英家教网 > 高中数学 > 题目详情

【题目】已知{an}为等比数列,a4+a7=2,a5a6=﹣8,则a1+a10=(
A.7
B.5
C.﹣5
D.﹣7

【答案】D
【解析】解:∵a4+a7=2,由等比数列的性质可得,a5a6=a4a7=﹣8
∴a4=4,a7=﹣2或a4=﹣2,a7=4
当a4=4,a7=﹣2时,
∴a1=﹣8,a10=1,
∴a1+a10=﹣7
当a4=﹣2,a7=4时,q3=﹣2,则a10=﹣8,a1=1
∴a1+a10=﹣7
综上可得,a1+a10=﹣7
故选D
【考点精析】认真审题,首先需要了解等比数列的通项公式(及其变式)(通项公式:),还要掌握等比数列的基本性质({an}为等比数列,则下标成等差数列的对应项成等比数列;{an}既是等差数列又是等比数列== {an}是各项不为零的常数列)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对任意x∈[﹣1,1],不等式﹣4≤x3+3|x﹣a|≤4恒成立,则实数a的取值范围为(
A.[﹣ ]
B.[﹣ ]
C.[0, ]
D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定点M(1,0)和直线x=﹣1上的动点N(﹣1,t),线段MN的垂直平分线交直线y=t于点R,设点R的轨迹为曲线E.
(1)求曲线E的方程;
(2)直线y=kx+b(k≠0)交x轴于点C,交曲线E于不同的两点A,B,点B关于x轴的对称点为点P.点C关于y轴的对称点为Q,求证:A,P,Q三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 平面 .设分别为的中点.

(1)求证:平面∥平面

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学艺术专业400名学生参加某次测评,根据男女学生人数比例,使用分层抽样的方法从中随机抽取了100名学生,记录他们的分数,将数据分成7组:[20,30),[30,40),┄,[80,90],并整理得到如下频率分布直方图:

(Ⅰ)从总体的400名学生中随机抽取一人,估计其分数小于70的概率;

(Ⅱ)已知样本中分数小于40的学生有5人,试估计总体中分数在区间[40,50)内的人数;

(Ⅲ)已知样本中有一半男生的分数不小于70,且样本中分数不小于70的男女生人数相等.试估计总体中男生和女生人数的比例.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,四边形是直角梯形,.

(1)求二面角的余弦值;

(2)设是棱上一点,的中点,若与平面所成角的正弦值为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.
(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.
(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:

日需求量n

14

15

16

17

18

19

20

频数

10

20

16

16

15

13

10

以100天记录的各需求量的频率作为各需求量发生的概率.
(i)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列,数学期望及方差;
(ii)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于实数a和b,定义运算“*”:a*b= 设f(x)=(2x﹣1)*(x﹣1),且关于x的方程为f(x)=m(m∈R)恰有三个互不相等的实数根x1 , x2 , x3 , 则x1x2x3的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】利用秦九韶算法判断方程x5+x3+x2-1=0[0,2]上是否存在实根.

查看答案和解析>>

同步练习册答案