精英家教网 > 高中数学 > 题目详情
6.设f(x)=kax-a-x(a>0且a≠1)是定义域为R的奇函数.
(1)求k的值;
(2)若f(1)>0,求不等式f(x2+2x)+f(x-4)>0的解集;
(3)若f(1)=$\frac{3}{2}$,且g(x)=a2x+a-2x-4f(x),求g(x)在区间[1,+∞)上的最小值.

分析 (1)根据f(x)是定义域为R的奇函数,可得k=1,
(2)f(x)=ax-a-x(a>0,且a≠1),利用f(1)>0,可得a>1,从而可证f(x)在R上单调递增,故原不等式化为x2+2x>4-x,从而可求不等式的解集;
(3)根据f(1)=$\frac{3}{2}$,确定a=2的值,从而可得函数g(x)=22x+2-2x-4(2x-2-x)=(2x-2-x2-4(2x-2-x)+2.令t=f(x)=2x-2-x,由(1)可知f(x)=2x-2-x为增函数,可得t≥f(1)=$\frac{3}{2}$,令h(t)=t2-4t+2=(t-2)2-2(t≥$\frac{3}{2}$),运用二次函数的最值的求法,即可得到最小值.

解答 解:(1)∵f(x)是定义域为R的奇函数,
∴f(0)=0,可k-1=0,即k=1,
(2)f(x)=ax-a-x(a>0,且a≠1)
∵f(1)>0,∴a-$\frac{1}{a}$>0,又a>0且a≠1,∴a>1.
f′(x)=axlna+$\frac{lna}{{a}^{x}}$,
∵a>1,∴lna>0,而ax+$\frac{1}{{a}^{x}}$>0,
∴f′(x)>0,∴f(x)在R上单调递增,
原不等式化为:f(x2+2x)>f(4-x),
∴x2+2x>4-x,即x2+3x-4>0,
∴x>1或x<-4,
∴不等式的解集为{x|x>1或x<-4}.
(3)∵f(1)=$\frac{3}{2}$,∴a-$\frac{1}{a}$=$\frac{3}{2}$,即2a2-3a-2=0,
∴a=2或a=-$\frac{1}{2}$(舍去).
∴g(x)=22x+2-2x-4(2x-2-x)=(2x-2-x2-4(2x-2-x)+2.
令t=f(x)=2x-2-x,由(1)可知f(x)=2x-2-x为增函数,
∵x≥1,∴t≥f(1)=$\frac{3}{2}$,
令h(t)=t2-4t+2=(t-2)2-2(t≥$\frac{3}{2}$),
当t=2>$\frac{3}{2}$,即x=log2(1+$\sqrt{2}$)时,h(t)取得最小值-2,
即有g(x)在区间[1,+∞)上的最小值为-2.

点评 本题考查函数单调性与奇偶性的综合,考查解不等式,考查二次函数最值的研究,解题的关键是确定函数的单调性,确定参数的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知$f(x)=\frac{sinx}{1+cosx}+1$,若$a=f(lg5),b=f(lg\frac{1}{5})$,则(  )
A.a+b=0B.a-b=0C.a+b=2D.a-b=2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.为了得到$f(x)=2sin({3x-\frac{π}{3}})$的图象,只需将g(x)=2sinx的图象(  )
A.纵坐标不变,横坐标伸长为原来的3倍,再将所得图象向右平移$\frac{π}{9}$个单位
B.纵坐标不变,横坐标伸长为原来的3倍,再将所得图象向右平移$\frac{π}{3}$个单位
C.纵坐标不变,横坐标缩短为原来的$\frac{1}{3}$,再将所得图象向右平移$\frac{π}{3}$个单位
D.纵坐标不变,横坐标缩短为原来的$\frac{1}{3}$,再将所得图象向右平移$\frac{π}{9}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.表面积为60π的球面上有四点S,A,B,C,且△ABC是等边三角形,球心O到平面ABC的距离为2,若平面SAB⊥平面ABC,则棱锥S-ABC体积的最大值为$\frac{121\sqrt{3}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.方程2a=|ax-1|(a>0且a≠1)有两个不同的解,则a的取值范围为(0,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设函数f(x)=lgx的定义域为A,函数g(x)=$\sqrt{1-{x}^{2}}$的定义域为B,则A∪B等于(  )
A.[-1,+∞)B.[-1,1]C.(0,1]D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一动圆P过定点M(-4,0),且与已知圆N:(x-4)2+y2=16相切,则动圆圆心P的轨迹方程是(  )
A.$\frac{x^2}{4}-\frac{y^2}{12}=1(x≥2)$B.$\frac{x^2}{4}-\frac{y^2}{12}=1(x≤2)$C.$\frac{x^2}{4}-\frac{y^2}{12}=1$D.$\frac{y^2}{4}-\frac{x^2}{12}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.离心率$e=\frac{2}{3}$,焦距2c=16的椭圆的标准方程为$\frac{x^2}{144}+\frac{y^2}{80}=1$或$\frac{x^2}{80}+\frac{y^2}{144}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.f(x)=loga$\frac{1-mx}{1-x}$为奇函数(a>1)
(1)求实数m的值;
(2)解不等式f(x-$\frac{1}{2}$)+f($\frac{1}{4}$-x)<0.

查看答案和解析>>

同步练习册答案