【题目】这三个条件中任选一个,补充在下面问题中,并给出解答.
设等差数列的前项和为,数列的前项和为,________,,若对于任意都有,且(为常数),求正整数的值.
【答案】11
【解析】
利用与的关系式求出的关系式,利用等比数列的定义和通项公式求得数列的通项公式,然后三个条件代入求解,分别求出等差数列的首项、公差,从而求得其通项公式,判断其增减性,求出使取得最大值的正整数的值.
由得,当时,;
当时,,从而,即,
由此可知,数列是首项为1,公比为2的等比数列,故,
①当,即,
设数列的公差为,则,解得,
所以,
因为当时,当时,所以当时取得最大值,
因此,正整数的值为11;
②当时,,
设数列的公差为,则,解得,
所以,
因为时,当时,所以当时取得最大值,
因此,正整数的值为11;
③当时,,
设数列的公差为,则,解得,
所以,
因为当时,当时,所以当时取得最大值,
因此,正整数的值为11.
故答案为:11
科目:高中数学 来源: 题型:
【题目】已知三棱锥P-ABC的平面展开图中,四边形ABCD为边长等于的正方形,△ABE和△BCF均为正三角形,在三棱锥P-ABC中:
(1)证明:平面PAC⊥平面ABC;
(2)若点M为棱PA上一点且,求二面角P-BC-M的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线C的参数方程为:(为参数).在以坐标原点为极点,x轴正半轴为极轴的极坐标系中,直线l的极坐标方程为.
(Ⅰ)求曲线C的普通方程和直线l的直角坐标方程;
(Ⅱ)设点P的直角坐标为,若直线l与曲线C分别相交于A,B两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了贯彻落实党中央对新冠肺炎疫情防控工作的部署和要求,坚决防范疫情向校园蔓延,切实保障广大师生身体健康和生命的安全,教育主管部门决定通过电视频道、网络平台等多种方式实施线上教育教学工作.某教育机构为了了解人们对其数学网课授课方式的满意度,从经济不发达的A城市和经济发达的B城市分别随机调查了20个用户,得到了一个用户满意度评分的样本,并绘制出茎叶图如下:
若评分不低于80分,则认为该用户对此教育机构授课方式“认可”,否则认为该用户对此教育机构授课方式“不认可”.
(1)请根据此样本完成下列2×2列联表,并据此列联表分析,能否有95%的把握认为城市经济状况与该市的用户认可该教育机构授课方式有关?
认可 | 不认可 | 合计 | |
A城市 | |||
B城市 | |||
合计 |
(2)以该样本中A,B城市的用户对此教育机构授课方式“认可”的频率分别作为A,B城市用户对此教育机构授课方式“认可”的概率.现从A城市和B城市的所有用户中分别随机抽取2个用户,用X表示这4个用户中对此教育机构授课方式“认可”的用户个数,求X的分布列.
参考公式:,其中.
参考数据:
0.10 | 0.05 | 0.025 | |
2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆经过点,且离心率为,过其右焦点F的直线交椭圆C于M,N两点,交y轴于E点.若,.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)试判断是否是定值.若是定值,求出该定值;若不是定值,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量与尺寸之间近似满足关系式(b,c为大于0的常数).按照某项指标测定,当产品质量与尺寸的比在区间内时为优等品.现随机抽取6件合格产品,测得数据如下:
尺寸x(mm) | 38 | 48 | 58 | 68 | 78 | 88 |
质量 | 16.8 | 18.8 | 20.7 | 22.4 | 24 | 25.5 |
质量与尺寸的比 | 0.442 | 0.392 | 0.357 | 0.329 | 0.308 | 0.290 |
(1)现从抽取的6件合格产品中再任选2件,求选中的2件均为优等品的概率;
(2)根据测得数据作了初步处理,得相关统计量的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
根据所给统计量,求y关于x的回归方程.
附:对于样本,其回归直线的斜率和截距的最小二乘估计公式分别为:,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知极坐标系的极点为直角坐标系xOy的原点,极轴为x轴的正半轴,两种坐标系中的长度单位相同,圆C的直角坐标方程为,直线l的参数方程为(t为参数),射线OM的极坐标方程为.
(1)求圆C和直线l的极坐标方程;
(2)已知射线OM与圆C的交点为O,P,与直线l的交点为Q,求线段PQ的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某生活超市有一专柜预代理销售甲乙两家公司的一种可相互替代的日常生活用品.经过一段时间分别单独试销甲乙两家公司的商品,从销售数据中随机各抽取50天,统计每日的销售数量,得到如下的频数分布条形图.甲乙两家公司给该超市的日利润方案为:甲公司给超市每天基本费用为90元,另外每销售一件提成1元;乙公司给超市每天的基本费用为130元,每日销售数量不超过83件没有提成,超过83件的部分每件提成10元.
(Ⅰ)求乙公司给超市的日利润(单位:元)与日销售数量的函数关系;
(Ⅱ)若将频率视为概率,回答下列问题:
(1)求甲公司产品销售数量不超过87件的概率;
(2)如果仅从日均利润的角度考虑,请你利用所学过的统计学知识为超市作出抉择,选择哪家公司的产品进行销售?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com