精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面是菱形,平面,点分别为中点.

(1)求证:直线平面

(2)求证:

(3)求与平面所成角的正弦值.

【答案】(1)见解析.

(2)见解析.

(3).

【解析】

(1)利用中点和平行四边形性质得出,利用直线平面的平行问题求解证明即可;(2)根据几何图形得出,直线平面的垂直得出,再运用判定定理求解证明即可;(3)运用直线平面所成角的定义得出夹角,转化为直角三角形中求解即可.

(1)证明:作

∵点中点,∴

,∴,∴为平行四边形,∴

平面平面,∴直线平面

(2)∵底面是菱形,∴

平面平面,∴

,∴平面

(3)连接∵点分别为中点,

平面,∴平面

根据直线与平面所成角的定义可得:与平面所成角或补角

中,

,∴与平面所成角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分12)

如图,在四棱锥PABCD中,底面ABCD是矩形,PA平面ABCDAP=ABBP=BC=2EF分别是PB,PC的中点.

()证明:EF平面PAD

()求三棱锥EABC的体积V.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】p:实数x满足x2-2(a+1)x+2a+a2<0,q:实数x满足

(1)若a=1,且p∧q为真,求实数x的取值范围;

(2)若p是q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高三数学竞赛初赛考试后,对考生的成绩进行统计(考生成绩均不低于90分,满分150分),将成绩按如下方式分成六组,第一组[90,100)、第二组[100,110)…第六组[140,150].图(1)为其频率分布直方图的一部分,若第四、五、六组的人数依次成等差数列,且第六组有4人. (Ⅰ)请补充完整频率分布直方图,并估计这组数据的平均数M;

(Ⅱ)若不低于120分的同学进入决赛,不低于140分的同学为种子选手,完成下面2×2
列联表(即填写空格处的数据),并判断是否有99%的把握认为“进入决赛的同学
成为种子选手与专家培训有关”.

[140,150]

合计

参加培训

5

8

未参加培训

合计

4

附:

P(K2≥k0

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,曲线f(x)= 在点(e,f(e))处的切线与直线e2x﹣y+e=0垂直.(注:e为自然对数的底数) (Ⅰ)若函数f(x)在区间(m,m+1)上存在极值,求实数m的取值范围;
(Ⅱ)求证:当x>1时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角ABC的对边分别是向量,且.

(1)求角B的值;

(2)若,且,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,设函数.

(1)求函数的单调递增区间;

(2)在中,边分别是角的对边,角为锐角,若的面积为,求边的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设关于的一元二次方程

(1)若是从0,1,2,3,4五个数中任取的一个数,是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;

(2)若是从区间上任取的一个数,是从区间上任取的一个数,求上述方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点C(3,4)且与轴,轴都相切的两个圆的半径分别为,则=______

查看答案和解析>>

同步练习册答案