精英家教网 > 高中数学 > 题目详情

【题目】重庆某地区年至年农村居民家庭人均纯收入(单位:万元)的数据如表:

年份

年份代号

纯收入

1)求关于的线性回归方程;

2)利用(1)中的回归方程,分析年至年该地区农村居民家庭人均纯收入的变化情况,并预测该地区年农村居民家庭人均纯收入.

附:回归直线的斜率和截距的最小二乘法估计公式分别为:.

【答案】1;(2)见解析,该地区年农村居民家庭人均纯收入约为万元.

【解析】

1)计算出的值,将表格中的数据代入最小二乘法公式,求出的值,即可得出关于的线性回归方程;

2)根据回归直线的斜率可预测出年至年该地区农村居民家庭人均纯收入的变化情况,并将代入回归直线方程可计算出该地区年农村居民家庭人均纯收入.

1)由已知得:

关于的线性回归方程为:

2)由(1)中的回归方程,可知

年至年该地区纯收入逐年增加,平均每年增加万元;

年的年份代号代入(1)中的回归方程得万元

故该地区在年的纯收入约为万元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】本相同的资料书配给三个班级,要求每班至少一本且至多六本,则不同的分配方法共有_____种.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一枚质地均匀的硬币向上抛掷三次,下列两个事件中,是对立事件的是(

A.事件恰有两次正面向上,事件恰有两次反面向上

B.事件恰有两次正面向上,事件恰有一次正面向上

C.事件至少有一次正面向上,事件至多一次正面向上

D.事件至少有一次正面向上,事件恰有三次反面向上

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆C:(a>b>0)的左、右焦点分别为,离心率为,过焦点且垂直于x轴的直线被椭圆C截得的线段长为1.

(Ⅰ)求椭圆C的方程;

(Ⅱ)已知点M(0,-1),直线l经过点N(2,1)且与椭圆C相交于A,B两点(异于点M),记直线MA的斜率为,直线MB的斜率为,证明 为定值,并求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】名学生某次数学考试成绩(单位:分)的频率分布直方图如图.

1)求频率分布直方图中的值;

2)估计总体中成绩落在中的学生人数;

3)根据频率分布直方图估计名学生数学考试成绩的众数,中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线过点,其参数方程为为参数, ),以为极点, 轴非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)求已知曲线和曲线交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知{an}为正项等比数列,a1+a2=6,a3=8.

(1)求数列{an}的通项公式an

(2)若bn=,且{bn}前n项和为Tn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4—4:坐标系与参数方程]

在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

1)求的直角坐标方程;

2)若有且仅有三个公共点,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点是直线)上一动点, 是圆的两条切线, 为切点, 为圆心,若四边形面积的最小值是,则的值是( )

A. B. C. D.

【答案】D

【解析】∵圆的方程为:

∴圆心C(0,1),半径r=1.

根据题意,若四边形面积最小,当圆心与点P的距离最小时,即距离为圆心到直线l的距离最小时,切线长PA,PB最小。切线长为4,

∴圆心到直线l的距离为.

∵直线

,解得

所求直线的斜率为

故选D.

型】单选题
束】
19

【题目】抛物线的焦点为,准线为,经过且斜率为的直线与抛物线在轴上方的部分相交于点 ,垂足为,则的面积是 ( )

A. B. C. D.

查看答案和解析>>

同步练习册答案